
Simulation ancl Modeling

Simulation Languages

Contents

5.1 Discrete systems modeling and simulation with GPSS -
5.2.1 GPSS programs
5 .2.2 General description
5.2.2 GPSS block -diagram symbols

5.2 Basic concepts
5.2.1. Action Times
5.2.3 Succession of events
5.2.3 Choice of paths

5.3 Resources in GPSS, GPSS programs, applications
5.3.1 Simulation of manufacturing shop
5.3.2 Facilities and storage
5.3.3 Gathering statistics
5.3.4 Simulation of supermarket

5.4 Continuous systems modeling and simulation with CSMP
5.4.1 Block Diagram and examples

5.5 Structural, data and control statements, hybrid simulation
5.5.1 SIMSCRIPT. Example of hybrid simulation using GPSS16

5.6 Feedback system and fypical applications
5.6.1 Simulation of a telephone system

1

1

1

2

5

5

6

l

7
'l

9

10

13

15

15

15

16

l5

cv/'
iY//

SIMULATION AND MODELING
5. SIMULATION LANGUAGE

5.1 Discrete svstems modelins and simulation with GPSS

To represent the state of the system in the model, a set of numbers is used that is
used in discrete time system. A number, state descriptor is used to represent some aspect

of the system state. Some state descriptors range over values that have physical
significance and some represent conditions

The effect of the state descriptors is to change value as the simulation proceeds.

We define a discrete event as a set of circumstances that causes an instantaneous change

in one or more system state descriptors. It is possible that two different events occur
simultaneously, or are modeled as being simultaneous, so that not all changes of state

descriptors occuqing simultaneously necessarily belong to a single event.
The term simultaneous refers to the occurrence of the changes in the system, and

not to when the changes are made in the model-in, which, of necessity, the changes must
be made sequentially. A system simulation must contain a number representing time.
The simulation proceeds by executing all the chariges to the system descriptors
associated with each event, as the events occur, in chronological order. The way in which
events are sOlected for execution (when there are simultaneous events) is an important
aspect of programming simulations.

For writing discrete system simulation programs, a number of programming
languages have been produced. These programs embody a language with which to
describe the system, and aprogramming system that will establish a system image and

execute a simulation algorithm. Each language is based upon a set of concepts used for
describing the system. The term world-view has come to be used to describe this aspect

of simulation programs. The user of the program must learn the world-view of the
particular language he is using and to describe the system in those terms. Given such a

description, the simulation programming system is able establish a data structure that
forms the system image. It will also compile and sometimes supply the routines to carry
out the activities. One of the most commonly used simulation language is GPSS. It
illustrates the divergence in design consideration. GPSS has been written specially for
user with little or no knowledge of programming experience. The simplification of GPSS

results in some loss of flexibility. GPSS is applicable to a wide variety of systems.

5.1.1 GPSS nrograms
The General Purpose Simulation System language has been developed over many

yenrs, principally by the IBM Corporation. It has been implemented on several different
manufacturers' machines, and there are variations in the different implementations. GPSS

V is a more powerful and has more language statements and facilities than GPSS/360.The
GPSS V is implemented by IBM Corporation.

5. 1"2 General description
The system to be simulated in GPSS is described as a block diagram in which the

blocks represent lhe activities and lines joining the blocks indicate the sequence in which

I
{

I

the activities can be executed. Where there is a choice of activities, more than one line
leaves a block and the condition for the choice is stated at the block.

To base a programming language on this descriptive method, each block must be
given a precise meaning. The approach taken in GPSS is to define a set of 48 specific
block types, each of which represents a characteristic action of the systems. Only the

specified block types are allowed while drawing the block diagram of the system. Each
block type is given a name that is descriptive of the block action and is represented by a

particular symbol. Each block type has a number of data fields.
Moving through the system being simulated are entities that depend upon the

nature of the system. In a communication system, the entities of concern are messages,

which are moving. Meanwhile in a road transportation system the entities that are moving
are the motor vehicles. A data processing system is concerned with records. In the
simulation, these entities are called transactions. The sequence of events in real time is
reflected in the movement of transactions from block to block in simulated time.

Transactions are created at one or more GENERATE blocks and are removed
from the simulation at TERMINATE blocks. There can be many transactions
simultaneously moving through the block diagram. Each transaction is always positioned
at a block and most blocks can hold many transactions simultaneously. The transfer of a
transaction from one block to another occurs instantaneously at a specific time or when
some change of system condition occurs.

A GPSS block diagram can consist of many blocks up to some limit prescribed by
the program (usually set to 1000). An identification number called a location is given to
each block, and the movement of transactions is usually from one block to the block with
the next highest location. The locations are assigned automatically by an assembly
program within GPSS so that, when a problem is coded, the blocks are listed in
sequential order. Blocks that need to be identified in the programming of problems are

given a symbolic name. The assembly program will associate the name with the
appropriate location. Symbolic names of blocks and other entities of the program must be

from three to five non-blank characters of which the first three must be letters.

5.1.3 GPSS block-diagram rymbols

S.N. Representation/Symb ols Meanins
I

AoB

Advance

2 Link

1) Seize

4

A,B,C,D

Assign

5 Logic

6 Tabulate

7 Deparl

8 Mark

9 Terminate

10 Enter

11 Priority

t2 Test

13 Gate

14 Queue

l5 Transfer

t6 Generate

l7 Release

18 Unlink

19 Leave

20

A,B,C

Save Value

5.2 Basic concepts

5.2.1 Action times
Clock Time is represented by tan integral number, with the interval of real time

corresponding to a unit of time chosen by the program user. The unit of time is not
specifically stated but is implied by giving all the time in terms of the same unit. One
block type called ADVANCE is concerned with representing the expenditure of time.
The program computes an interval of time called action time for each transaction as it
enters an ADVANCE block, and the transaction remains at the block for this interval of
simulated time before attempting to proceed. The only other block type that employs
action time is the GENERATE block, which creates transactions. The action time at the
GENERATE block controls the interval between successive arrivals of transactions.

The action time may be a fixed interval or a random variable, and it can be made
to depend upon conditions in the system in various ways. An action time is defined by
giving a mean and modifier as the A and B fields for the block. If the modifier is zero,the
action time is a constant equal to the mean. If the modifier is a positive number
(<:mean), the action time is an integer random variable chosen from the range (mean +
modifier), with equal probabilities given to each number in the range.

By specifying the modifier at an ADVANCE or GENERATE block to be a

function, the value oi th, function controls the action time. The action time is derived by

multiplying the mean by the value of the function' Various types of input-c.an be used for

the functions, allowing the functions to introduce a variety of relationships among the

variable of a syste*] f" particular, by making the function an inverse cumulative

probability distiibution, ffid using as input a random number which is uniformly

distributed, the function can provide a stochastic variable with a particular non-uniform

distribution.
The GENERATE block normally begins creating transactions from zero time, and

continues to generate them throughout itt. ti*tttution' The C field, however' can be used

to specify an-offset time as the time when the first transaction will arrive. If the D field is

,r"d, it specifies a limit to the total number of transactions that will come from the block'

Transactions have a priority level and they cany items of data called parameters' The E

field determines the priority of the transactions at the time of creation. If it is not used,

the priority is of the lowest level.

Parameters can exist in four formats. They can be signed integers of fullword,

halfword, or byte ,ir., ot they can be signed floating-point numbers' If no specific

assignment of parameter type is made, the program creates transactions with 12 halfivord

paraleters. Th; C, D and E fields, also, will not be needed'

5.2.2 Succession of events
Th. progruri-*-futains records of when each transaction in the system is due to

move. tt proceeds by completing all movements that are scheduled for execution at a

particular instant of iime unO tlut can logically be performed. Where there is more than

one transaction due to move, the program plocesses transactions in the order of their

priority class, and on a first-come, first-served basis within priority class'

Once the program has begun moving a transaction it continues to move the

transaction through th-e block diagram until one of the several circumstances arises'

The transaction may enter an ADVANCE block with a non-zero action time, in

which case, the program *ill t rrr. its attention to other transactions in the system and

return to that transaciion when the action time has been expended'

The conditions in the system may be such that the action the transaction is

attempting to .*"rrt. by entering a block cannot be performed at the cufrent time' The

transaction is said to be blocked and it remains at the block it last entered. The program

will automatically detect when the blocking condition has been removed and will start to

move the transaction again at that time'
A third possibiity is that the transaction enters a TERMINATE block, in which

case it is removed from ihe simulation. A fourth possibility is that a transaction may be

put on a chain.
When the proglam has moved one transaction as far as it can go, it tums its

attention to any oth.i transactions due to move at the same time instant. If all such

movements are complete, the plogram advances the clock to the time of the next most

imminent event and repeats the process of executing events.

5.2.3 Choice of nuths
The TRANSFER block allows some location other than the next sequential

location to be selected. The choice is normally made between two blocks referred to as

next blocks A and B. The method used for choosing is indicated by a selection factor in
the field A of the TRANSFER block. It can be set to indicate one of the r'ine choices.

Next blocks A and B are placed in fields B and C, respectively. If no choice is to be

made, the selection factor is left blank. An unconditional transfer is then made to next
block A.

A random choice can be made by setting the selection factor, S, to a three-digit
decimal fraction. The probability of going to next block A is then 1-S, and to the next
block B it is S. a conditional mode, indicated by setting field A to BOTH, allows a

transaction to select an alternate path depending upon existing conditions. The transaction
goes to next block A if this move is possible, and to the next block B if it is not. If both
moves are impossible the transaction waits for the first to become possible, giving
preference to A in the event of simultaneity.

5.3 Resources in GPSS. GPSS programs, applications

5.3.1 Simulation of munufactaring shop
Let us consider a scenario representing a machine tool in a manufacturing shop

which is turning out parts at the rate of every 5 minutes. The parts are then examined by
the inspector who takes 4+3 minutes for each part and rejects about 10% of the parts. We
can represent each parlby one transaction, and the time unit selected for the problem will
be 1 minute. A block diagram representing the system is given below:

GENERATE

ADVANCE

TRANSFER

TERMINATE

510

413

C

0, I\-<
I

AC

Fie: Manufacturing shop- model I

In the block diagram, the block location is placed at the top of the block, the
action time is indicated in the center in the form T:a, b where a is the mean md b is the

modifier and the selection factor is placed at the bottom of the block.
A GENERATE block is used to represent the output of the machine by creating

one transaction every five units of time. An ADVANCE block with a mean of 4 and

modifier of 3 is used to represent inspection. The time spent on inspection will therefore
be any one of the values 1,2, 3, 4, 5, 6 or 7, with equal probability given to each value.
Upon completion of the inspection, transactions go to a TRANSFER block with a

selection factor of 0.1, so that 90Yo of the parts go to the next location called ACC, to

represent accepted parts and l0% go to another location called REJ to represent rejects.

Both locations reached from the TRANSFER block are TERMINATE blocks.
The problem can be coded. Column I is only used for a comment card. A field

from columns 2 to 6 contains the location of the block where it is necessary for it to be

specified. The GPSS program will automatically assign sequential location numbers as it
reads the statements, so it is not usually necessary for the user to assign locations. The
TRANSFER block, however, will need to make reference to the TERMINATE blocks to
which it sends transactions, so these blocks have been given symbolic location names

ACC and REJ.
The second section of the coding, from columns 8 to 18, contains the block type

name, which must begin in column 8. Beginning at column 19, a series of fields may be

present, each separated by commas and having no embedded blanks. Anything following
the first blank is treated as a comment. The meaning of the fields depends upon the block
type.

The program also accepts input in a free format, in which the location field, if
used, begins in column 1; but none of the other fields has a fixed starting position. Instead

a single blank marks the transition from the location field to the operation field and from
the operation held to the operands. If no location is specified, an initial blank is used.

For the TRANSFER block, the first field is the selection factor, and the B and C
fields are exits 1 and2, respectively. In this case, exit 1 is the next sequential block, and it
would be permissible to omit the name ACC in both the TRANSFER field B and the

location field of the first TERMINATE block. It should also be noted that when a

TRANSFER block is used in an unconditional mode, so that field A is not specified, a

comma must still be included to indicate the field.
The program runs until a cefiain count is reached as a result of transactions

terminating. Field A of the TERMINATE block carries a number indicating by how
much the termination count should be incremented when a transaction terminates at that
block. The number must be positive and it can be zero, but there must be at least one

TERMINATE block that has a non-zero field A. in this case, both TERMINATE blocks
have 1; so the terminating counter will add up the total number of transactions that
terminate, in other words, the total number of both good and bad parts inspected.

A control statement called START indicates the end of the problem definition and

contains, in field A, the value the terminating counter is to reach to end the simulation. In
this case, the START Statement is set to stop the simulation at a count of 1,000. Upon
reading a START statement, the program begins executing the simulation.

When the simulation is completed, the program automatically prints an output
report, in a prearranged format, unless it has been instructed otherwise.

The problem input is printed first, with the locations assigned by the problem
listed to the left, and a sequential statement number on the right. The first line of the
output following the listings gives the time at which the simulation stopped. The time is
followed by a listing of block counts. Two numbers are shown for each block of the

model. On the left is a count of how many transactions were in the block at the time the
simulation stopped, and on the right is a figure showing the total number of transactions
that entered the block during the simulation.

5.3.2 Facilities and storase
Associated with the system being simulated are many permanent entities, such as

items of equipment, which operate on the transactions. Two types of permanent entities
are defined in GPSS to represent system equipment.

A facility is defined as an entity that can be engaged by a single transaction at a
time. A storage is defined as an entity that can be occupied by many transactions at a
time, up to some predetermined limit. A transaction controlling a facility, however, can
be interrupted or preempted by another transaction. In addition, both facilities and
storages can be made unavailable, as would occur if the equipment they represent breaks
down, and can be made available again, as occurs when a repa:r has been made.

There can be many instances of each type of entity to a limit set by the program
(usually 300), Individual entities are identified by number, a separate number sequence

being used for each type. The number 0 for these, and all other GPSS entities, is illegal.
Block types SEIZE, RELEASE, ENTER and LEAVE are concerned with using

facilities and storages. Field A in each case indicates which facility or storage is intended,
and the choice is usually marked in the flag attached to the symbols of the blocks. The
SEIZE block allows a transaction to engage a facility if it is available. The RELEASE
block allows a transaction to disengage the facility. An ENTER block allows a

transaction to occupy a pace in storage, if it is available, and the LEAVE block allows it
to give up the space. If the fields B of the ENTER and LEAVE blocks are blank, the
storage contents are changed by 1. If there is a number (>:1), then the contents change
by that value. Any number of blocks may be placed between the points at which a facility
is seized and released to simulate the actions that would be taken while transaction has

control of a facility. Similar arrangements apply for making use of storages.
To illustrate the use of these block types, consider again the manufacturing shop.

Since the average inspection time is 4 minutes and the average generation rate is one
every 5 minutes, there will normally be only one part inspected at a time. Occasionally,
however, a new part can arrive before the previous part has completed its inspection. This
situation will result in more than one transaction being at the ADVANCE block at one
tirne.

Assuming that there is only one inspector, it is necessary to represent the
inspector by a facility, to simulate the factthat only one part at a time can be inspected. A
SEIZE block and a RELEASE block need to be added to simulate the engaging and
disengaging of the inspector.

GENERA

SEIZE

ADVANC

RELEAS

TRANSF

TERMINATE

TE 5,0

I

I

E
413

E

ER

AC

'0,
>\\

1

--< REJ

\

J
1 I

Fig: Manufacturing shop- model2

If more than one inspector is available, they can be represented as a group by a

storage with a capacity equal to the number of inspectors. The SEIZE and RELEASE

blocks of the previous model are then replaced by an ENTER and a LEAVE block,
respectively. Suppose, for example, the inspection time were three times as long as

before; three inspectors would be justified.
The case of a single inspector can be modeled by using storage with capacity 1

instead of facility. An important logical difference between the two possible

representations is that, for a facility, only the transaction that seized the facility can

release it, whereas, for a storage, entering and leaving can be separate actions carried out

independently by different transactions.

5. 3. 3 Gsthering statistics
Ceftain block types in GPSS are constructed for the purpose of gathering statistics

about the system performance, rather than of representing system actions. The QUEUE,

10

DEPART, MARK and TABULATE blocks serve this purpose. They introduce two other
entities of the GPSS program, queues and tables. As with facilities and storages, there can

be many such entities up to a prescribed limit (usually, 300 for queues and 100 for tables)
and they are individually identified by a number or symbolic name.

When the conditions for advancing a transaction are not satisfied, several

transactions may be kept waiting at a block. When the conditions are favorable, they are

allowed to move on, according to priority and usually by first-in, first-out rule. No
information about the queue of transactions is gathered, however, unless they have been

entered into a queue entity. The QUEUE block increases and the DEPART block
decreases the queue numbered in field A. If field B is blank, the change is a unit change;

otherwise the value of field B (>:1) is used.

It is also desirable to measure the length of time taken by transactions to move
through the system or pafts of the system and this can be done with the MARK and

TABULATE, blocks. Each of these block types notes the time a transaction arrives at the

block. The MARK block notes the time of arcival on the transaction. The TABULATE
block subtracts the time noted by a MARK block from the time of arrival at the
TABULATE block. The time, referred to as transit time, is entered in a table whose
number or name is indicated in field A of the TABULATE block.

If one part arrives when all the inspectors are busy, the machining of further parts

stops until the machine is cleared. It could also be that parts will accumulate on the

inspectors' work bench if inspection does not finish quickly enough. A QUEUE block
using queue number 1 is placed immediately before the ENTER block, and a DEPART
block is placed immediately after the ENTER block to remove the part from the queue

when inspection begins. Any transaction that does not have to wait for an inspector to
become available will move through the queue without delay. Those that must wait will
do so in the QUEUE block, and the program will automatically measure the length of
stay in the queue. A MARK and a TABULATE block will measure how long the parts

take to be inspected, excluding their waiting time in the queue. If MARK block is

omitted, the tabulated time is the time since the transactions first entered the system.

li

GENERATE

OI]EUE

ENTER

DEPART

MARK

ADVANCE

LEAVE

TABIILATE

TRANSFER

TERMINATE

Fig: Manufacturing shop - model 3

t2

(.=.' '-

5.3.4 Simulation of sapermarket
Parameters are items of data that represent attributes of the transaction. In

addition, there are attributes of other entities of the system, such as the number of
transactions in storage or the length of a queue, which are made available to the program
user. Collectively, they are called Standard Numerical Attributes (SNA).

To illustrate the use of functions, parameters and SNAs, a simulation model can
be written for a supermarket that operates in the following manner. Customers of the
supermarket are obliged to take a basket before they begin to shop. There is a limited
number of baskets and if no basket is available when they arrive, customers leave without
shopping. If they get a basket, customers shop and then check-out at one of five check-
out counters. After checking out, they return the baskets and leave the supermarket.

There are four sections in the system
a) Getting a basket
b) Shopping
c) Checking-out
d) Leaving

Each shopper is represented by a transaction and the unit of time is 1 second.

Function number 1 of the simulation model controls the inter-arrival time
at a GENERATE block with a mean of 36.

To represent the baskets, a storage denoted by BSKT is used with capacity
equal to the number of baskets.

The block count at AWAY will show the number of customers turned
away for lack of baskets.

The number of items is determined by an ASSIGN block which has SNA
called FN2 in field B.

The counters are regarded as a service unit with five servers. They are
represented by storage, named CKT that has a capacity of 5.

Field A of ADVANCE block representing the checking-out time is set to
vl.

Transit time is tabulated in a table called TRT.

13

GET A BASKET

SHOP

CHECK OUT

LEAVE

t4

5.4 continuous svstems modeling and simulation with cSMp

Continuous systems are predominant activities of the system because smooth
changes in the attributes of the system entities" It is possible to solve the simple
differential equation models having one or more linear differential equation with constant
coefficients, without use of simulation. But the cost of time and labor needed may be so
high that it is often preferable to use the simulation techniques. Also in case of
introduction of nonlinearities into the models, it becomes almost impossible or very
different to solve the models. Simulation methods of solving the models do not change
fundamentally when nonlinearities occur" Showing their application to models where the
differential equations are linear and have constant coefficients, and then generalizing to
more complex equations can therefore develop the method of applying simulation to
continuous models.

5.4.1 Block diagram and examples

Continuous system sirnulation language (CSSL) use a type of input for digital
computers allowing a problem to be progmmmed directly from the equations of a
mathematical model rather then requiring the equations to be broken into functional
elements. These languages can include macros or subroutines that perform the function of
specific analog elements so that it is possible to incorporate the convenience of a digital
analog simulator. Beyond the provision of sirnple analog functions such as addition and
integration, continuous system simr-rlation Language includes a variety of algebraic ancl
logical expressions to describe the relation between variables. They therefore remove the
orientation towards linear ditferential equation which characterizes analog methocls.
Continuous System Modeling Program (CSMP) is one of such Continuous System
Simulation language.

CSMP is constructed from three general types of statements-Structure Staternents"
Data Statements and Control Statements. Structure statements consist of FORTRAN like
statements and functional blocks designed fbr operations that freqr.rently occur in a model
definition. Structure statement thus defines the model. Structural statement can make use
of the operation of addition, subtraction, multiplication, division and exponential using
the same notation and rules as used in FORTRAN.

5.5 Structural data and control statements, hybrid simulation

An analog and a digital computer can at times be combined to provide a hybrid
simulation. The form taken by hybrid sirnr"rlation depends upon the application. One
computer may be simulating the system being studied, while the other is providing a
simulation of the environment in which the system is to operate. It is posibl. that the
system being simulated is an interconnection of continuous and cliscrete subsystem,
which can best be modeled by an analog and digital computer being linked together.

The term "hybrid simulation" is generally reserved for the case in which
functionally distinct analog and digital computers are liked together for the purpose of
simulation.

15

5.5.1 $IMSCRIPT, Exumple of hvbrid simulution usine GPSS
SIMSCRIPT is a very widely used language for simulating discrete systems. The

language can be considered as more than just a simulation language since it can be
applied to general programming problems.

,SIMSCRIPT qtstem conc epts
The system to be simulated is considered to consist of entities having attributes

that interact with activities that cause events that change the state of the system.
SIMSCRIPT uses the terms entities and attributes in describing the system. The user can
define sets, and facilities are provided for entering and removing entities to and from sets.

5.6 Feedback system and typical applications

A significant factor in the performance of many systems is that a coupling occurs
between the input and output of the system. The term feedback is used to describe the
phenomena. A home heating system controlled by a thermostat is a simple example of a
feedback system. The system has a furnace whose purpose is to heat a room, and the
output of the system can be measured as the room temperature. Depending upon whether
the temperature is below or above the thermostat setting, the fumace will be turned on or
off, so that information is being fed back from the output to the input. In this case, there
are only two states; either the furnace is on or off. Other cooling systems used also
employ the same concept/principle of feedback for their operation.

5.6.1 Simulution of il telephone svstem
The assumed telephone system has a number of telephones connected to a

switchboard by lines. The switchboard has a number of links which can be used to
connect any two lines, subject to the condition that only one connection at a time can be

made to each line. It will be assumed that only one connection at a time can be made to
each line. It will be assumed that the system is a lost-call system, that is, any call that
cannot be connected at the time it arrives is immediately abandoned. A call maybe
blocked or busy. The object of simulation will be to process a given number of calls and
determine what proportion are successfully completed, blocked or found to be busy calls.

Each line is treated as an entity, having its availability as an attribute. A zero in
the table means the line is free, while a one means that it is busy. It is only necessary to
incorporate in the model the constraint imposed by the fact that there is a fixed number of
links. Each line is represented by a logic switch whose number is the line number. Each
call is represented by one transaction; the unit of time chosen is 1 second.

To keep track of events, a number representing clock time is included. The clock
will be updated to the next most imminent event as the simulation proceeds. Each call is a
separate entity having as attributes its origin, destination, length, and the line at which the
call finishes. To generate the anival of calls, the bootstrap method is used, so that a

record is kept of the time the next call is due to aruive. It will be assumed that the call is
equally likely to come from any line, other than itself, irrespective of whether that line is
busy or not.

There are two activities causing events: new calls can arrive and existing calls can
finish.

t6

The simulation proceeds by executing a cycle of steps to simulate each event. 'fhe

first step is to scan the events to determine which the next potential event is. The clock is
updated, and the second step is to select the activity that is to cause the event. The third
step is to test whether the potential event can be executed. The fourth step is to change
the reoords to reflect the effects of the event. As a fifth and final step in the execution
cycle, it may be necessary to gather some statistics for the simulation output. Assuming
the simulation is to continue, the cycle of actions just described is repeated.

The procedure will be repeated until some limit on the length of the simulation is
reached. Typically, the simulation will run until a given number of calls have been
processed or until a cerlain time has elapsed.

Fie: Telephone system in GPSS

t7

