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E ti ti M th dEstimation Methods
 Estimates the range for the random variable so that g

the desired output can be achieved.

 Infinite population has a stationary probability      
distribution with a finite mean µ and finite variance 
σ².σ .

 Sample variable and time does not affect    
population distribution .

V i bl th t t ll th diti ll d Variables that meet all these conditions are called 
independently and identically distributed.
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E ti ti M th dEstimation Methods
 Central limit theorem must be invoked to rely upon 

normal distribution of infinite population.

 Only then we can apply estimation method to that 
variable taken from infinite population.variable taken from infinite population.
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E ti ti M th dEstimation Methods
 A random variable is drawn from an infinite population that has 

a stationary probability distribution with a finite mean, µ, and 
finite variance, σ ².

 Random variables that meet all these conditions are said to be 
independently and identically distributed, usually abbreviatedindependently and identically distributed, usually abbreviated 
to i.i.d. for which the central limit theorem can be applied.

 The theorem states that the sum of n i i d variables drawn The theorem states that the sum of n i.i.d. variables, drawn 
from a population that has a mean of µ and a variance of σ ², is 
approximately distributed as a normal variable with a mean of 
nµ and a variance of nσ ².µ
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E ti ti M th dEstimation Methods
 Let xi (i=1,2,…,n) be the n i.i.d. random variables. 

Then normal variate: 
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E ti ti M th dEstimation Methods
 In terms of sample mean x
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E ti ti M th dEstimation Methods
 The probability density function of the standard 

normal variate is shown in the figure.
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E ti ti M th dEstimation Methods
 The integral from -∞ to a value µ is the probability that z 

is less than or equal to µ. The integral is denoted by .    .  )(u

 Suppose the value of µ is chosen so that                  
where α is some constant less than 1, and denote this 

l f b

2/1)(  u

value of u by       .  

 The normal distribution is symmetric about its mean, so 
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y ,
the probability that z is less than         is also α/2.2/u
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E ti ti M th dEstimation Methods

 The probability that z lies between and        is 1-α. 
That is,
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E ti ti M th dEstimation Methods
 In terms of sample mean, this probability statement 

can be written as:
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 The constant 1- α is the confidence level and  the 
fid i t l i
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E ti ti M th dEstimation Methods
 Typically, the confidence level might be 90% in which case           

is 1.65. 2/u

 The population variance σ ² is usually not known; in which case 
it is replaced by an estimate calculated from the formula
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 The normalized random variable based on σ ² is replaced by a 
normalized random variable based on s2.This has a Student-t 
distribution, with n-1 degrees of freedom.
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E ti ti M th dEstimation Methods
 The quantity        used in the definition of a confidence 

interval given above, is replaced by a similar quantity,             
based on the Student-t distribution.

2/u
2/,1nt

(which tables are also readily available)

 The Student-t distribution is strictly accurate only when The Student-t distribution is strictly accurate only when 
the population from which the samples are drawn is 
normally distributed.

 Expressed in terms of the estimated variance s2, the 
confidence interval for         is defined by x
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CONCLUSIONCONCLUSION
 Hence the estimation method gives the desired 

range of the sample variable taken from infinite 
populationpopulation.
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Si l ti R St ti tiSimulation Run Statistics
 Consider a single-server system in which the 

arrivals occur with a Poisson distribution and the 
service time has an exponential distribution.

 Suppose the study objective is to measure the mean 
waiting time, defined as the time entities spend g p
waiting to receive service and excluding the service 
time itself.

 This system is commonly denoted by M/M/1 which 
indicates; first , that the inter-arrival time is 
distributed exponentially; second that the service 
ti i di t ib t d ti ll d thi d th ttime is distributed exponentially; and, third, that 
there is one server. The M stands for Markovian, 
which implies an exponential distribution. 17



Si l ti R St ti tiSimulation Run Statistics
 In a simulation run, the simplest approach is to 

estimate the mean waiting time by accumulating the 
waiting time of n successive entities and dividing by 
nn.

 This measure, the sample mean, is denoted by       
to emphasize the fact that its value depends upon

)(nx
to emphasize the fact that its value depends upon 
the number of observations taken.

 If xi (i=1 2 n) are the individual waiting times If xi (i=1,2,….,n) are the individual waiting times 
(including the value 0 for those entities that do not 
have to wait), then 
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Si l ti R St ti tiSimulation Run Statistics
 Whenever a waiting line forms, the waiting time of 

each entity on the line clearly depends upon the 
waiting time of its predecessorswaiting time of its predecessors.

 Any series of data that has this property of havingAny series of data that has this property of having 
one value affect other values is said to be 
autocorrelated.

 The sample mean of autocorrelated data can be 
shown to approximate a normal distribution as theshown to approximate a normal distribution as the 
sample size increases.
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Si l ti R St ti tiSimulation Run Statistics
n1

 The equation                     remains a satisfactory 
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estimate for the mean of autocorrelated data.

A i l ti i t t d ith th t i A simulation run is started with the system in some 
initial state, frequently the idle state, in which no 
service is being given and no entities are waiting.

 The early arrivals then have a more than normal 
b bilit f bt i i i i kl lprobability of obtaining service quickly, so a sample 

mean that includes the early arrivals will be biased.
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Si l ti R St ti tiSimulation Run Statistics
 For a given sample size starting from a given initial 

condition, the sample mean distribution is 
stationary; but if the distributions could bestationary; but , if the distributions could be 
compared for different sample sizes, the distribution 
would be slightly different.

 The following figure is based on theoretical results, 
which shows how the expected value of samplewhich shows how the expected value of sample 
mean depends upon the sample length, for the M/M/1 
system, starting from an initial empty state, with a 
server utilization of 0.9.
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Si l ti R St ti tiSimulation Run Statistics
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Replications of Runsp
 The precision of results of a dynamic stochastic 

can be increased by repeating the experiment y p g p
with different random numbers strings.

 For each replication of a small sample size, theFor each replication of a small sample size, the 
sample mean is determined.

 The sample means of the independent runs can The sample means of the independent runs can 
be further used to estimate the variance of 
distribution. Let X ij be the ith observation in jth run, 
then the sample mean and variance for the jth run p j
are: 
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R li ti f RReplications of Runs
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Replications of Runsp
 When we have similar means and variances for m 

independent measurements then by combiningindependent measurements, then by combining 
them, the mean and variance for the population 
can be obtained as:
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R li ti f RReplications of Runs
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R li ti f RReplications of Runs
 The following figure shows the result of applying the The following figure shows the result of applying the 

procedure to experimental results for the M/M/1 
system.

2727



Replications of Runsp
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Replications of Runsp
 This variance can further be used to establish the confidence interval for p-1 degrees 

of freedom.

 The length of run of replications is so selected that all combined it comes to the 
sample size N.    i.e. p.n=N.

 By increasing the number of replications and shortening their length of run, the 
confidence interval can be narrowed.

 But due to shortening of length of replication the effect of starting conditions will 
increase.

 The results obtained will not be accurate, especially when the initiazation of the runs 
is not proper.

 Thus, a compromise has to be made., p

 There is no established procedure of dividing the sample size N into replications.

 However, it is suggested that the number of replications should not be very large, and 

29

that the sample means should approximate a normal distribution.
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Eli i ti f I iti l BiElimination of Initial Bias
 Two general approaches can be taken to remove the bias: 

the system can be started in a more representative state 
that the empty state, or the first part of the simulation can 
be ignoredbe ignored.

 The ideal situation is to know the steady state 
distribution for the system and select the initialdistribution for the system, and select the initial 
condition from that distribution.

 In the study previously discussed, repeated theIn the study previously discussed,  repeated the 
experiments on the M/M/1 system, supplying an initial 
waiting line for each run, selected at random from the 
known steady state distribution of waiting line.
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Eli i ti f I iti l BiElimination of Initial Bias
 The case of 40 repetitions of 320 samples, which 

previously resulted in a coverage of only 9% was 
improved to coverage of 88%improved to coverage of 88%.

 The more common approach to removing the initialThe more common approach to removing the initial 
bias is to eliminate an initial section of the run.

 The run is started from an idle state and stopped 
after a certain period of time.
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Eli i ti f I iti l BiElimination of Initial Bias
 The run is then restarted with statistics being 

gathered from the point of restart.

 It is usual to program the simulation so that 
statistics are gathered from the beginning, andstatistics are gathered from the beginning, and 
simply wipe out the statistics gathered up to the 
point of restart.

 No simple rules can be given to decide how long an 
interval should be eliminated.interval should be eliminated.
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Eli i ti f I iti l BiElimination of Initial Bias
 The disadvantage of eliminating the first part of a 

simulation run is that the estimate of the variance, 
needed to establish a confidence limit must beneeded to establish a confidence limit, must be 
based on less information.

 The reduction in bias, therefore, is obtained at the 
price of increasing the confidence interval size.
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