Modelling with Classes

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

What constitutes a good model?

1A model should
O use a standard notation
O be understandable by clients and users
O lead software engineers to have insights about the system
O provide abstraction

[1Models are used:
O to help create designs
O to permit analysis and review of those designs.
O as the core documentation describing the system.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Static: Class Diagram (Rumbaugh/Booch)

1 Utilized for Static Structure of Conceptual Model

1 Class Diagram Describes
O Types of Objects in Application
O Static Relationships Among Objects
O Temporal Information Not Supported
1 Class Diagrams Contain
O Classes: Objects, Attributes, and Operations
O Packages: Groupings of Classes
O Subsystems: Grouping of Classes/Packages

1 Main Concepts: Class, Association, Generalization, Dependency,
Realization, Interface

1 Granularity Level of Use-Cases is Variable

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Essentials of UML Class Diagrams

[1The main symbols shown on class diagrams are:
O Classes
m represent the types of data themselves

O Associations
m represent linkages between instances of classes

O Attributes
m are simple data found in classes and their instances

O Operations
m represent the functions performed by the classes and their instances

O Generalizations
m group classes into inheritance hierarchies

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Classes

*A class is simply represented as a box with the name of the class inside

e The diagram may also show the attributes and operations
e The complete signature of an operation is:
operationName(parameterName: parameterType ...): returnType

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Rectangle Rectangle Rectangle Rectangle Rectangle
getArea() height height - height:
resize() width width - width:

getArea() + getArea(): mnt
resize() + resize(1int, int)

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

each class

dentify classes, attributes of eac

The Class Diagram Notation

N class, and operations of

o Classes, their attributes and methods are specified based
on the objects needed to realized use case and interfaces

to external entities

Class

Attribute

cperationi)

Detailed
Attributes,
Data types,
And operations
Are defined/
refined

Hari Prasad Pokhrel (hpokhrel24@gma|D:biﬁing deSign

Clircle

itgRadius:double
iteCenter: Point

Lrea() :double
Circumference () :double
SetCenter (Polnt)
SetRadius (double)

UML Class-to-Java Example

UNIXaccount

+ username : string

+ groupname : string = “staff"
+ filesystem_size : integer

+ creation_date : date

- password : string

- no_of accounts :integer=0

Operations (Methods)

Figure

- X nteger = ()

-y integer = ()

4+ draw()

Associations and Multiplicity

e An association is used to show how two classes are related to each other
o Symbols indicating multiplicity are shown at each end of the association

Employee [4 Company
. : : % 1.3
AdministrativeAssistant Manager
Company 4 BoardOfDirectors
. 0.1 l Bean
Office Employee
Person 238 2l BoardOfDirectors

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Object Diagrams

[0 Object (Instant) Diagrams give a representation of a class diagram using actual objects in the system. For
example if this is our class diagram:

0 Which of the following object diagrams are valid?

Employee * l Company
Homer
E— Walmart
Isa
— Sears
Bart

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Labelling associations

e Each association can be labelled, to make explicit the nature of the

association
| sk worksFor
Employee 1 Company
Administrative Assistant - Manager
SUpervisor
Company ' BoardOfDirectors
llocatedT sk |
Office 2L 2ocaecob Employee
Person o= ' BoardOfDirectors
boardMember

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

A Student can take many Courses and many Students
can be enrolled in one Course.

Student course
takes »
Alice: Student 254 Course
Jill: Student 253: Course
124@gmail.com)

Analyzing and validating associations

e Many-to-one
A company has many employees,

An employee can only work for one company.

« This company will not store data about the moonlighting activities of

employees!
A company can have zero employees
 E.g. a‘shell’ company

It is not possible to be an employee unless you work for a company

Employee |*

worksFor

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Company

Analyzing and validating associations

e Many-to-many
A secretary can work for many managers
A manager can have many secretaries
Secretaries can work in pools
Managers can have a group of secretaries
Some managers might have zero secretaries.

s it possible for a secretary to have, perhaps temporarily, zero managers?

Secretary

1.*

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

supervisor

Manager

Analyzing and validating associations

e One-to-one
For each company, there is exactly one board of directors
A board is the board of only one company
A company must always have a board
A board must always be of some company

Company ! 1l BoardOfDirectors

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Multiplicity

o Multiplicity can be expressed as,
e Exactlyone -1
e Zeroorone -
e Many -
e One or more -
e Exact Number - e.g.

e Or acomplex relationship —e.g. 0..1, 3..4, would mean
any number of objects other than 2 or 5

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Analyzing and validating associations

*Avoid unnecessary one-to-one associations

o Avoid this do this
Person PersonInfo Person
1 1
name address name
email address
birthdate email
birthdate

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Question

eLabel the multiplicities for the following examples:

rented

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Customer = Video

___currentlyRenting

\Woman o Child
____qgivesBirthToo

Brother Sister
__ has

League __currentlyOnliceFor Hockey Team

Player — AssignedTo

Question

[IIn words, what do these diagrams mean?

Country 0..1 hasCapital 1 City
Person * favourite 0..1 Colour
CJA Country has one and only one city as its capital
DA City
A Colour
CJA Person

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Another Question:

 Correctly label this diagrams multiplicity:

Car ? listeningTo 2 Radio Station

? couldTunelnto ?

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

A more complex example

» A booking is always for exactly one passenger

no booking with zero passengers

a booking could never involve more than one passenger.
o A Passenger can have any number of Bookings

a passenger could have no bookings at all

a passenger could have more than one booking

Booking passengers on flights)

Passenger Booking SpecificFlight

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Question

Create two or three classes linked by associations to
represent the following situations:

- A landlord renting apartments to tenant

- An author writing books distributed by publishers

eLabel the multiplicities (justify why you picked them)
»Give each class you choose at least 1 attribute

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Your Answer

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Reflexive assoclations/ self association.

e |t is possible for an association to connect a class to itself
e An association that connects a class to itself is called a self

association.

Successor

| Course |

=
prerequisite

At TU, you must have
CS2210 and CS2211 to
take CS2212

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

iIsMutuallyExclusiveWith

\

At TU, you can’t take
Calc 1301b and
Calc1501b

Assoclation - Self

A Company has Employees.
A single manager is responsible for up to 10 workers.

1

Employee
manager‘

Responsible
for 0..10

worker

Assoclation - Multiplicity

A cricket team has 11 players. One of them is the
captain.

A player can play only for one Team.
The captain leads the team members.

Team Captain
em | Player 1 0..1Team
ber 10
41 member of » 1
1| Captain

{ Leads

Assoclation classes

e Sometimes, an attribute that concerns two associated classes cannot be
placed in either of the classes

e The following are equivalent

Student | : % CourseSection
i
Registration
grade
Student |1 *| Registration |* 1] coyrseSection
grade

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Question

*Add association classes to the following many to many
assoclations and come up with at least one attribute for the new

assoclation class:

Guest . . = | HotelRoom
stay in
Spectator Show
P * attended *
Player * * | SportsGame

participated in

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Qualified and "Or" Associations

User

Host

Person Plates — Car
PID * Process |IP-addr
*
ltem of |1 0.. Male
clothing person
] [or)
*
0.. Female
person

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Class Relationships
= Assoclation

= Composition
= Generalization

= Realization
= Dependency

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Generalization (Inheritance)

e Child class is a special case of the parent class

SuperClass

T

SubClassl

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

SubClass?

Generalization/Specialization Relation

eSpecializing a superclass into two or more subclasses

e The discriminator is a label that describes the criteria used in the
specialization

Anmimal Animal

habitat typeOtFood
/\ /\

AquaticAnimal LandAnimal Carnivore Herbivore

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Generalization/Specialization Relation

Generalization Is shown as a solid-line
arrow from the child (the more specific
element) to the parent (the more general
element) this type of relationship Is also
called inheritance.

Should be used to define class hierarchies based
on abstraction

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Generalization/Specialization Relation

Account

O RR=]
el bl

balance:flogt=0
id:5tring

COOe

Acount
get Balancefloat

CrednCardAccount

Sawings Accournt

get Intere=t Rate:float

collect Aecourt Infolin [IBank AP boolzan
gethdnimumBalance:float

COOe

get 1di7:5tring
collect Account Infolin ([Bank AP boolzan
CheckingAccount SavingsAccount
ﬁ"i cradit Limit : float
) ﬁ-] interast Rate flogt é"i imerest Rate OnBalance float
0 Ehecking fecount .ﬁ"j minimum Balance:flogt=10000 é"i imerest Rate OnCashadvance float
{:} collect Aocount Inforlin J1Bank AP boolean

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

POOOY

Credit Card Account

get Credit Limit O float

getinterest Rate On Balance:float
getintersst Rate OnCashadvance) float

collect Account Infolin JIBank AP boolean

Avoiding unnecessary generalizations

Recording

7a)

| ﬁdmﬁlacnrdhg | | Aucﬁnﬂlemrm-.g|

AN
I |

| ms-cme::| | JazzRacording ||[Iassi:3lﬁe:nrding| mmémmmg | mcmu_:cm

Inappropriate hierarchy of classes, which should be instances

Ask yourself: Does this class require any operations that will be
done differently than the other classes? If answer is no, don’t make
It a class!

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Avoiding unnecessary generalizations

(cont)

. 1 .
Recording | RecordingCatego
e g - I,II - glategory .
abe beategary
artist -
(a
Fp—— R econdingCaegorny
R ecodingCateqo
4 & label="audio"
label="videa"
subcategory wﬁah&gugﬁﬁmnw/ \ mhmkubmeguw
R ecodingCategory || R ecordingCategony || :RecodingCakgon || RecodingCategory || R ecordingCategony
label="miusicvidea" || label="jazz" label="classical” label="bluas" label="rock"
I:Httgﬂj' tﬂt@r}'
Hecmrding :R ecording
title="0th Symiphonmy™ title="Let it be”
artist="Beethowen” artist="The Beatles”
(k)

Improved class diagram, with its corresponding instance

diagram

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Handling multiple discriminators

e Creating higher-level generalization

e Say we had a Prey class, we would need TWO associations instead of

just one.

Prey

N

Animal

Ahabitar

AquatigAnmal

typeOfFood A \rype()fFood A

LandAnmal

AquaticCarnivorc

AquaticHerbivore

LandCarnivore

LandHerbivore

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Handling multiple discriminators

O Using multiple inheritance

Anmal

habitatZk Atype()ﬂ?ood

AquaticAnimal LandAnimal Carnivore Herbivore
JANNVANANVANA /\ TANEEVAN

ol AquaticCarnivore| | AquaticHerbivore| | LandCarnivore | | LandHerbivore

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Avoiding having instances change class

 An instance should never need to change class

e This is a poor model:

Student

f E attendance

FullTimeStudent

PartTimeStudent

A bit better solution, but then we lose the polymorphism advantage for
any operations that differ between Full TimeStudent and

PartTimeStudent:

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Student

attendanceStatus

Multiple inheritance

InterestBearingltem | | Insurableltem

£\

multiple inheritance

multiple inherntance
Assel
N single inheritance
BankAccount RealEstate Security
CheckingAccount SavingsAccount Stock Bond

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Generalization (Inheritance) e.g.

Circle

N

GraphicCircle

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Inheritance - Implementation

public class Circle {

}

public class GraphicCircle extends Circle {

}

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Abstract Class

Circle

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Rectangle

Abstract Methods (Operations)

Circle Rectangle

draw() draw()

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Abstract class and method
Implementation

Hari Prasad PoK

public abstract class Shape {
public abstract draw(); //declare
without implementation

public class Circle {
public draw(){

hrel (hpokhrel24@gmail.com)

Class Relationships

= Association

= (Generalization
= Realization

= Dependency

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Realization- Interface

* |Interface Is a set of operation the class carries out

Keyboard

brandName ;<|i3net\?\; 1;{:;(:> >
numOfKeys 'D' y |

ctl()

pageDown() keyStroke()

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

OR

Keyboard

brandName
numOfKeys

ctl()
pageDown()

O

TypeWriter

Realization - Implementation

public interface TypeWriter {
void keyStroke()

}

public class KeyBoard implements TypeWriter {
public void keyStroke(){

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Class Relationships

= Assoclation

= (eneralization
= Realization

= Dependency

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Dependency : A Special Case of
Association

 Change in specification of one class can change the other class.
This can happen when one class Is using another class.

Circle

_ - - - 3] Point

Move(p:Point)

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Import java.awt.Graphics;
class HelloWorld extends java.applet.Applet {
public void paint (Graphics g) {

g.drawString("Hello, World!", 10, 10);

¥
¥

Applet

HelloWorld

g.drawString

/\

(“Hello, World!”, 10, 10)

HelloWorld

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

paint()

Dependency cont

e Dependency relationship can be used to show relationships

between classes and objects.

T
VS ~
]]]Sfa ~
le

GO &A

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

~
~

- 1circleA:Circle

circleB:Circle

Dependency

Dependency
Client
CommandManager
\
TimerEvent RequestHandler ResponseHandler

CommandManager (Client class) depends on services
provided by the other three server classes

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

This figure shows a dependency from CourseSchedule to
Course, because Course is used in both the add and
remove operations of CourseSchedule.

CourseSchedule

add(c:Course) |~~~ "7 77" > Course

remove(c : Course)

«fiend»

Hari Pra Iterator

Class Diagram - Example

[1Draw a class diagram for a information modeling system
for a school.
O School has one or more Departments.
O Department offers one or more Subjects.
O A particular subject will be offered by only one department.

O Department has instructors and instructors can work for one
or more departments.

O Student can enrol in upto 5 subjects in a School.

O Instructors can teach upto 3 subjects.

O The same subject can be taught by different instructors.
O Students can be enrolled in more than one school.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Class Diagram - Example

o has one or more

School Department
- has »

Department offers one or more Subjects.

A particular subject will be offered by only one
department.

Department Subject
offers »

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Class Diagram - Example

» Department has Instructors and instructors can work for
one or more departments.

Instructor Department

assignedto »

Student can enrol in upto 5 Subjects.

Student Subject
! takes »

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Class Diagram - Example

e Instructors can teach up to 3 subjects.

e The same subject can be taught by different instructors.

Instructor

teaches

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

>

Subjects

Class Diagram - Example

e Students can be enrolled in more than one school.

Student

member

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

>

School

Class Diagram Example

has
School Department
(O 1.*
1...% 1
offeres A
A v assignedTo
member
* 1.* 1.
Student e > Subject [Ceaches | nstructor
* 1.3 ll..3 1.7

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Object Diagram
e Object Diagram shows the relationship
between objects.

e Unlike classes objects have a state.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Object Diagrams

e Alink is an instance of an association
In the same way that we say an object is an instance of a class

Pat:Employee

Wayne:Employee

\

OOCorp:Company

OOCorp's Board:

Ali:Employee

/7

Carla:Employee

Terry:Employee

UML inc:Company

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

UMIL. inc¢’s Board:

Object Diagram
Track Instance Behavior

e Class
Diagram

e Instance
Diagram

Department

-degree:String[]={"graduate" "undergraduate” "hoth"}

0.*

instance name

1

subdepartment

class name

mathStat:Department

statistics:Department

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

math:Department

appliedMath:Department

mathEd:Department

Object Diagram

 Captures Instances and Links

c: Company

di : Department

name = “Sales”

d3 : Department

object —®
name = “US Sales”

manager

p : Person /

name = “Erin”
employeelD = 4362
title = “VP of Sales”

link

d2 : Department

ename = “R&D"

attribute value

(anonymous object
: Contactinformation

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

address = “1472 Miller 5t."

Describing the use of a word processor

A user can open a new or existing document. Text i

entered through a keyboard. A document is made u
of several pages and each page is made up of a
header, body and footer. Date, time and page numkt
may be added to header or footer. Document body |
made up of sentences, which are themselves made
up of words and punctuation characters. Words are
made up of letters, digits and/or special characters.
Pictures and tables may be inserted into the
document body. Tables are made up of rows and
columns and every cell in a table can contain both
text and pictures. Users can save or print document

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

= Nouns (underlined in previous) are either classes or

= Verbs (italicised in previous) are class operations
= Main handled entity: document

their attributes

Document Page Trimming Picture
-numberCOfPages -pagefMNMumber " date ErE———
+apen() +newPage() ~time -imageSize
rsave() +hideHeader() -pageMNumber +insert()
+print() +hideFooter() +display() +delete()
+rnew() +insertPicture() +change()

+insertTable() +hide() cell
ﬁ%‘ —callFormat
Character | +edit()
:’;ﬁgncme Heacder Footer
+rnormal()
+italic() +newHeadar() +nawFooter()
+bold()
+undearline()
Table
4}” -rOWS
| | | -columns
Letter Punctuation Special Murmbrer +INnsartRow()
character +insertColumni)
+newTable()
*insartPicture()

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Doocurmeaent

—-mnumbercoafFPages

+ el)
Eat=T=ATr =T
“primtd)
renas ()

.-1
.1 __1'\-

Fage
—pacgeMurm e r
=+ e P Eages)
e Hesdder)
+hidaeFooterd)

+insertFictured)
“+insertTakle()

<

1

o__1 -

Trirmrming

—d e tes

—tirme
—pageHumiber
s lay ()
+ohamged])
s=lcles)

C.__i-

Character

|

- A SN CSodes
—tywpe

Takla

“rvcrrriall)
“+ita=lic=()
el)
Fuimclerlimed)

— WS
—columns

Ficturas

D--ﬁ

+irsaertRowe ()
+irnsartiCoslurmrd)y
“rrew T able()
“insaertFictured)

—irmageae T vwpoer
—imageSize

Fin=ert])
+dexlates)

1
4 =

Cell

ﬂb—cellﬁcrmat e

ol it)

Question:

*Draw a class diagram corresponding to the following
situation:

- A media player (Most software media players support an array of media formats,
like Quicktime for Macs or Windows Media Player for Windows)that can handle
sound, images and sequences of images. Each type of medium requires a “plug-in”
(plug-in is a set of software components that adds specific capabilities to a larger
software application), although some plug-ins can handle more than one type of
medium.

- An organization has three categories of employee: professional staff, technical
staff and support staff. The organization also has departments and divisions. Each
employee belongs to either a department or a division. Assume that people will
never need to change from one category to another.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Your Answer:

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Question:

*Draw a class diagram that could generate the object diagram
shown below:

isMemberOf

United Nations: I\ Canada: N\.
o isMemberOf P isPartof
| France: / \ —~
| _ Ontario:
_ isMemberOf isPartOf e "
. isMemberOf
isMemberOf borders /
I borders /

NATO: Quebec: borders
|

isMemberOf borders

borders \ / ispartof =] New York State:

N United States: T

Mexico:

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Your answer:

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Associations versus generalizations In

object diagrams

O Associations describe the relationships that will exist between
Instances at run time.

When you show an instance diagram generated from a class diagram,
there will be an instance of both classes joined by an association

O Generalizations describe relationships between classes in class
diagrams.
They do not appear in instance diagrams at all.

An instance of any class should also be considered to be an instance of
each of that class’s superclasses

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

More Advanced Features: Aggregation

 Aggregations are special associations that represent ‘part-whole’
relationships.

The *whole’ side is often called the assembly or the aggregate
This symbol is a shorthand notation association named 1sPartOf

Vehicle <>l ™ VehiclePart

Country (> " Region

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

When to use an aggregation

[JAs a general rule, you can mark an association as an aggregation if the
following are true:
O You can state that

the parts ‘are part of’ the aggregate
or the aggregate ‘is composed of’ the parts

O \When something owns or controls the aggregate, then they also own
or control the parts

NOTE: Might be able to say a person is part of a club BUT
the owner of the club does NOT own the members

Club ember

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Composition: A Special case of
Aggregation

A composition is a strong kind of aggregation

e Composition is shown as a solid filled diamond, with the diamond attached to the class that
is the composite. Composition is a form of aggregation that requires coincident lifetime of
the part with the whole and singular ownership; i.e. the part is owned by only one whole
and is deleted when the whole is deleted

If the aggregate is destroyed, then the parts are destroyed as well

Building (g * Room
° T iim Albniciimn bt ian fns AdAiaaaaaa
1
Employee Employee P Address
address: Address street
municipality
region
country
postalCode

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Composition example

:ControlSystem::SatelliteControlSystem

w PC

PowerController

db
cc

DataBus CommunicationsController

ac

AttitudeController

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Aggregation vs Composition

0.* |sub-team
0.7 1.7
Team (= Employee

0.1
1
builds
1.7
1.F * cub-
Airplane ‘1 Compaonent J." sub
assembly
Y
assembly

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Propagation

O A mechanism where an operation in an aggregate is implemented by having
the aggregate perform that operation on its parts

O At the same time, properties of the parts are often propagated back to the
aggregate

O Propagation is to aggregation as inheritance is to generalization.
The major difference is:
inheritance is an implicit mechanism
propagation has to be programmed when required

Eg. Deleting a polygon means deleting the line segments

Polygon ‘1 i LineSegment

O Marking par CWiTore dssutiduuil ds dil dyyreydtuir ustiy uie marnond symbol
Is optional. Leaving it as an ordinary association is not an error, whereas
marking a non-aggregation with a diamond is an error, therefore when in
doubt, leave it out!

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Question

1 For each of the following associations, indicate whether it
should be
an ordinary association
a standard aggregation <>
a composition o

a) A telephone and its handset
b) A school and its teachers
c¢) A book and its chapters

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Interfaces

*An interface describes a portion of the visible behaviour of a set of objects.

 An interface is similar to a class, except it lacks instance variables and
Implemented methods

e Although Employee and ATM share common operations they have different
superclasses. This means they cannot be put in the same inheritance hierarchy;
therefore the interface called Cashier is used

A key advantage of using interfaces is that they can reduce what is called coupling
between classes.

e Inheritance indicates an isa relationship, interfaces indicate a can-be-seen-as

relationship
«interface»])
Person Cashier Machine Person Machine
/\ Withdrgw A A Cashier A Cashier
deposit Q (P
Employee | . ATM Employee ATM

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

| n‘irﬁerr]:@ec%pe ratlcr)]n |gn8a;[u%£§6\%)s;[¥cp ga‘?s)

1 Stereotype — Extend UML with New Modeling Items Created from
Existing Kinds (Classes)

ShuttleSchedule ==place==
1 1.% ShutileStop
ordered
+dated:Date ‘ ;
+loacationQ:String

,.,-"'

__--"
— interface - Q
o S ries
Balloons
Dated i ocatabie 7
for Interfaces,f
“‘“ﬂ ,f’
,f’
- - - P L P
- -~ -~
- SessionTalk
Session
1 1.* | -title:String
+date:Date +stopnTime

+location:5tring .
Hari Prasad Pokhrel (hpbkhrel24@gmail.com +startTirme

The Process of Developing Class
Diagrams

eYou can create UML models at different stages and with
different purposes and levels of details
e Exploratory domain model:
Developed in domain analysis to learn about the domain

e System domain model:
Models aspects of the domain represented by the system

e System model:

Includes also classes used to build the user interface and system
architecture

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

System domain model vs System
model

e The system domain model omits many classes that are needed to build a
complete system

Can contain less than half the classes of the system.

Should be developed to be used independently of particular sets of
o user interface classes
« architectural classes

e The complete system model includes
The system domain model
User interface classes

Architectural classes such as the database, files, servers, clients
Utility classes

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Suggested sequence of activities

O Identify a first set of candidate classes

O Add associations and attributes

O Find generalizations

O List the main responsibilities of each class
O Decide on specific operations

O Iterate over the entire process until the model is satisfactory

Add or delete classes, associations, attributes, generalizations,
responsibilities or operations

|dentify interfaces
Apply design patterns

1 Don’t be too disorganized. Don’t be too rigid either.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

ldentifying classes

e When developing a domain model you tend to discover classes

e When you work on the user interface or the system
architecture, you tend to invent classes
Needed to solve a particular design problem
(Inventing may also occur when creating a domain model)
 Reuse should always be a concern
Frameworks
System extensions
Similar systems

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

A simple technique for discovering
domain classe

e Lookat asource matena% such as a description of requirements
e Extract the nouns and noun phrases
e Eliminate nouns that:

are redundant

represent instances

are vague or highly general

not needed in the application. For example in a domain model, you
would eliminate classes that represent command or menus in the Ul. As
a rule of thumb, a class is only needed in a domain model if you have to
store or manipulate instances of it in order to implement a requirement

e Pay attention to classes in a domain model that represent types of users or
other actors

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

ldentifying associations and attributes

e Start with classes you think are most central and important

e Decide on the clear and obvious data it must contain and its
relationships to other classes.

» Work outwards towards the classes that are less important.

e Avoid adding many associations and attributes to a class
A system is simpler if it manipulates less information

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Tips about Identifying and specifying
valid associations

O An association should exist if a class
W [0SSESSes
m controls
m is connected to
m is related to
m isa part of
m has as parts
m isa member of, or
m has as members

some other class in your model
O Specify the multiplicity at both ends
O Label it clearly.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Actions versus assoclations

e A common mistake is to represent actions as if they were associations

LibraryPatron .
” n Loan L LibraryPatron
borrowedDate
borrow refurn d
uebate ¥ 1 Collectionlt
% % returnedDate olicctionitem
Collectionltem _
Better: The borrow operation creates a

Loan object and the return operation set

Bad, due to the use of the returnedDate attribute

associations that are actions

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

ldentifying attributes

e Look for information that must be maintained about each class
e Several nouns rejected as classes, may now become attributes

e An attribute should generally contain a simple value
E.g. string, number

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Tips about Identifying and specifying
valid attributes

e It is not good to have many duplicate attributes

e If a subset of a class’s attributes form a coherent group, then
create a distinct class containing these attributes

Person

name
addresses

Bad due to a plural
attribute

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

An example
associations)

(attributes

and

Passenger Employee RegularFlight
name name * time
number employeeNumber 0.1 tlightNumber
1 jobFunction supervisor
k
H k ke
Booking | LI SpecificFlight
seatNumber date

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

l[dentifying generalizations and
Interfaces

O There are two ways to identify generalizations:
bottom-up

m Group together similar classes creating a new superclass
top-down

m Look for more general classes first, specialize them if needed
O Create an interface, instead of a superclass if

The classes are very dissimilar except for having a few operations in
common

One or more of the classes already have their own superclasses
Different implementations of the same class might be available

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

An example (generalization)

PersonRole

0..2

/\

PassengerRole

1

.

Booking

seatNumber

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Person
]
name
1dNumber
| i RegularFlight
EmployeeRole)
' . ! time
J ObFunCthn Sup.e]‘vigor ﬂightNunlber
sk 1
=3 =3
L SpecificFlight
date

vastc oluuy
0 Implement the game of Boogle
O http://www.hasbro.com/scrabble/en_US/boggleGame.cfm

[0 Some Specs:
« There is an admin mode, tournament mode, fun play mode
O To get into admin mode type: java UWOBoggle -admin
O To getinto tournament mode or fun play mode type: java UWOBoggle
Then select Tournament or Fun Play
« InAdmin Mode Must Be able to

O Manage players:
Add, delete and modify players. Players have a first name, last name, userid and password.

Sort players by first and last name la
yer C
<-

Reset password
O Manage puzzles (puzzles are made up of 16 letters and puzzleid) < Iayer
Add, delete, bulkload, solve (using a stored dictionary of valid words) and list by puzzleid —
O Manage tournaments (2-8 players per tournament, tournament has a unique tournament id and a name. A tournaments run in 1-
3 battles of 2 per round, winning player moves to the next round)
Add tournaments

Add players to a tournament, add puzzles (all players play the same puzzle on each round but in pairs, higher scorer for
each pair moves to the next round, in odd numbers, the highest scorer get a buy to the next round) to a tournament
(must keep track of the score for each player for each round and the winner of each pairing)

Delete tournaments
List tournaments by tournament id or by tournament name

Print tournaments

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

More Specs

*In Tournament or Fun Play Mode a user must be able to:
*Log on (gets 3 attempts and then kicked out)
*Play puzzles as follows
«Start the puzzle
*Given 3 minutes to find words
*Given a score at the end

oIf the puzzle is not a tournament puzzle, the player can see the solution for the puzzle.
*In just Tournament Mode

*Player sees a list of tournaments that he/she is participating in
*Picks an ongoing tournament

*Plays the puzzles

Sees if he/she moves to the next round

*In just Fun Mode

*Pick a puzzle from the list of puzzles
*Play the puzzle

*View the top 3 scores for that puzzle
*See the top 3 players (who have the highest scores for any games)

Working in pairs, determine the nouns and noun phrases that
might, in the end, become potential classes. Add the attributes and

associations. While making your list, choose good names for each
of the potential classes

REMEMBER you only need classes in the domain model for
things that need to have data stored about them!

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Your Answer

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

fF'u‘t F'Ia:,ler--ﬁ\.
», Tournament
™.

! Bulkioad Puzzles |

\wqusesn
™,

/ Generate Scluticn™,
' ForPuzzle gdidendsa
b
SectPume)
AN Bet Puz A [Delete Puzz)
T e, -
aeitendsy m——

o~ — -
| List Puzzles

\“-\.
-,
]
o

-

Laura’s Use Case
™,
- R .,
D I a ral I l fo r th e /P ck Puzzies Far™, -y TUSESR — e
%, Rounds ANF— _ ™
S — —{ Create Tournament ;.
/H_____ ——— / 8 ;
| Delete Tounament |~ ’_,‘- List Toumaments/_, I, . -
\\"- --"/ s e S I A -
o /, ‘-./'.", I,H:!r'un strator
wextendss ! I
/J aUsEsy
f/-’ ! |-
e TN e
! Select Toumament | |~ Pick Orderfor & "
S % Toumament List,. _ .
T M { Print Toumament |
S Ny ,

"

Hari Prasad Pokhrel (hpokhrel24

/.--"
|, View Solutien

T T, sextendse
1 Select Puzzle | -
sextendss —

e
Generate Randcm\-,
. Puzzle ./-l\

-

M, —

b T
aex‘len@ Play Puzzle

N e -

extendss
e T
"EES:'

=1
.,

xextendss
: / ~,
kv sewtendsyT 7, List Tounaments
T —— __.__,.-- W \“. _,z'
-~ ""-\ - — -

| Select Tounament |-
e o

™ " -
o List Piayers) 4
{ List Flayers |—mexie

}{J List Puzzles |

J Create Puzzie™,
cextendsd ' Randomly
- - o

-

-~] T
~| Dielete Player |

ndss

aUSESy

A
Set Order Of™,
'__L. Players /

™
g
A

I".-
Reset Passwon

d)

_,-/.
" - -
Select Player |

—{ Select Made)
\Se B c:f./
\\ ./,-‘
“{ Change Password |

o ™,
| Log Onto System |
e o

agetendss
J"’
/ ...‘\1
| Print Tournament | .

Tournament

-TourlD
-Name

Laura’s Class T
Diagram for the
Project 2

Completed Tournament In Progress Tournament

Puzzle
13 1 -PuzzlelD
,“7 -Letters
Round 1
1 -RoundMumber 1
1
Player Game Solution
-lserlD -Score —
-Password | *
-FirstName .
-LastMame 1 .
1
1.4
Battle TournamentGame ValidWord
-WWinner . -DatePlayed |~
-Loser -FoundWords .
1 2 .
1
Dictionary

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

One group’s class diagram for the project. This one has
problems...Can you see them? o

-ADMIN : siring(idl) = admin 1

AdminGui | | +main)
1 1 PlayerGUi
T
+AdminGui() - . -
+hulkLoad()) . g +PlayerGui() 1
I r 1 ! -finvd Payer()
1 T ' MTre—
1 1
1
1
1 PlayerRecord
1 1
TournamentRecord “getiayer) objectidl | |
+addPlayer()
+getTaurnament() GameRecord +removePlayar()
+addTournament()
+remaveToumnameant() +getGame()
J +addGame) \ 1
1 +removeGamea()
1 Player
-1d : string(idl)
-Scores[] - long double(idl)
1 -FirstName : string(idl)
, -LastMame - strina(id)
. -Password : stringlidl)
+gatMame() - string(idl)
Game ~getid() - string(idl)
Tournament _board[4][4] +getScore() : long double(idl)
- - singildl) -clice(16][E)
-name - string(idl) -scores[3]
-players [] : object{idl) -solutions]] 1
-games[] : objectiidl) +setBoard()
MINSIZE : long doubledid) = 2 +validWord() : boolean(idl)
MAXSIZE :_tunq double(idl) =3 SolutionGraph
+addPlayer{)
+removePlayer()
+viewStandings() " +SolutionGraph() . string(idl)
-30lvel)

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Hari Pr

UML Class Diagram

+setlastlh
+zetl=zerl
+getFirscliame
+getlastllams

+getUserIl

Tournament

DiceBoard

+letterCombination

+generatePuzzle ()

1

Solution

Hari Prasad Pokhrel (hpokhrel

AdministrativellserMode

+addhlewlsen])

+addPuzzle()

+add Tournameni|)
+oeletePlayer)
+HistUserDinCrden)
+istUsersByFirsthamelnCrder()
+istlUsersByLastamelnOrder|)
+deleteTournamenti)
+deletePlayerFromToumament|)
HistTournamentSyMNamea()
+HistTournamentByl D}

Dictionary

-TreeTrie

Data

-userindex
-tournamentindex
-puzzlelndex

J—

FunPlayMode

TournamentiMode

+user®laySoggle()
+userCheckStats()
+userSeeltherPlayerStats()

+userParicipatesinToumament)

e —

PlayMaode

-currentPlayinglser

+playGamel)

I
Puzzle

-puzzlelD
-board
-possible\Words
+getPuzzlelD)
+g=tSolution()
+getBoard|)

+getlserListBylDi) 1 +enowGELUI()
+saveTolisk() +quit(}
+loadFromDisk()
+geillserListByFirsifame()
+geillserListByLastMame{)
+getTournameilistByI D]}
+getTournamentListByhame()
+getPuzzielist{)
+geillser3yl D)
+getPuzzi=ByIO)
+geiTournamentSy| 0}
1 1
1
. x
Tournament
User
-tournamentD —
-nams] -userlD
active . -password
" 2.8 -firstMame
+getRound() JastMams
+gethlamei) —
+deletelser() +getFirsthams()
sgenerat=Chart() +getlasthame()
—is_' ciivel) v +resatPassword|)
it +setPassword()
4_ +checkPassword{)

1.3
RoundMatch
TournamentRound -playeriWords
_roundlD . —ainner
- 1 1.4 [score
*getPuzzie() -hasPlayed
+getRoundMatchi) +getiVards)
- = T
+getivinner()
+getSoorsi)

+hasPlayed()

]

1

Dice

HletterAmay

+letierA)

GameResult

-date

-words

-SCore
+calculateSoors()

(]

Boggle

-allPuzzles

Tournament

-numberliFlaysrs
-tournament!D
-tournamentMame
-activePlayers
-curentRound
-curentPuzzle
-tournamentPuzzies

+tournament()
+addPlayer])

-allUsars

1 -allTournaments
-useriode
-playhMode

-skin
-currentlUser

+main{}

+remaoveFlayer(} Competitor
+beginRound{}
gin {:-ur'.ll, -

+playPuzzle() —
+completeRound() +sethctival) 0.
+zomplete Tournament) +getictivel] -
+prinfTournament|}
o.r

0.”
1.3

Puzzle Played

-puzzleAmay -score
-puzzlelD ~viswedSolution
-solution

-highScores
-tournamentPuzzie

+puzzle()

+puzzle()

+solvel)

+getSolution()
+geiTournamentStatus()
+setTournamentStatus()
+getHighScore()
+setHighScore()
+playPuzzle()

+s=tHighScore()
+getHighScors()
+s=tSolutionSeen()
+getSaolutionSesn()

Hari Prasad Pokl 1ol \I IIJU[\I 1] CIL"I‘LU’UuI rHairrn.vulili I}

Dice

-diceMumber
-side1

-side2

-side3

-sided

-side5

-sided
-facellp

“rollf)

GuUl

User

-nackground Calour
-buttonColour
-=dgeColour

-userlD

-password
-firstiame
-lasttame

b -puzzlesPlay=d

-solutionsSeen
-currentT ournaments
-pastTournaments
-firstLagin

+uzer()

+getiD{)}
+getPasswordi)
+setPasswordi)
+getFirstame()
+setFirstiamsa{}
+getlastMame(}
+setlastMame()
+addPuzzleFlaysdi)
+getPuzzlesPlayad()
+addTournamsant()
+getCurrentTournaments()
+getPastTournaments()
+finishTournamsant()

+toAdmin)
+iohMain()
+ioTourmament()
+ioFunPlay()
+ioPlayFuzzle()
+ioEnterLogini)

+ioChangePassword()

+ioAddUsers()
+ioAddPuzzles()

+ioCreate Tournament|)

+ioListPuzzies()
+ioSeeSolutions()
+ioCloseGame()

UMUL Class Dia

Boggle

FTime

rgetPuzzle()
HeetPuzzle()
HstartFlay)
FisDore()
FgetSomre(}
raddWord()
HgetTimelefi])
FsetSoore()

1

gram:
2

- N

=t

FSoone Player Match
FWords 0 FDate
rDictionary -Password L ‘+getDate()
+HAdd werd() l-First Nama * oetScore()
H+aetScons() -Last Mame 2 HoatPlayer()
"'QEtWDI'dS[_:l +QE"E1::I
+oalPassword() i
: +geiFisMams() Y
+geflastMame()
 Satsssanii] Tournament
+selFiisiNamel) -ID
+setl_zsthame(} -HName
T [retlDf)
. +édd Playern|}

1 +Dalata Playen)
tgetMamed}
+sathamel)

Storage « |+getRound()

-order +yetPlayer()
+addPlayer|)
+addPuzzle(| 1
+add Tournameant() 1
+deleePlayer()
+deletePuzzie()
+dalete Toumament()
+save() 1
+Hoad(}
rgetFlayar()
. +getTournament() 10
+getFuzzlel)
+operation ()
+551C|rdarlr1£(] +hulkLoad() 1.3
Puzzle 1 [tloadObjecy) N
LD 1 +aavedbject])
-Solufion . Round
FLayaut
+getiD() FSet Puzzlel
B e | dapuseil
Bkl . 0.1 +Gat Malchi)
+aetSolutioni) ______________.—/
1getlayout() 1 +Set Match()

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Question

e|ldentify any generalizations or interfaces. This may lead you to
add or delete classes, associations and attributes. Modify your
class diagrams accordingly.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Allocating responsibilities to
classes

* A responsibility is something that the system is required to do.
e Each functional requirement must be attributed to one of the classes
All the responsibilities of a given class should be clearly related.
If a class has too many responsibilities, consider splitting it into distinct classes
If a class has no responsibilities attached to it, then it is probably useless

When a responsibility cannot be attributed to any of the existing classes, then
a new class should be created

 To determine responsibilities

Perform use case analysis
Look for verbs and nouns describing actions in the system description

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Categories of responsibilities

O Setting and getting the values of attributes

O Creating and initializing new instances

O Loading to and saving from persistent storage

O Destroying instances

O Adding and deleting links of associations

O Copying, converting, transforming, transmitting or outputting
O Computing numerical results

O Navigating and searching

O Other specialized work

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

An example (responsibilities)

- Creating a new regular flight
- Searching for a flight

- Modifying attributes of a
flight

- Creating a specific flight
- Booking a passenger

- Canceling a booking

ok

\]

Sllp@l‘ViSOl‘

Airline

l

=E<

RegularFlight

time
flightNumber

x

1

 SpecificFlight

Person
PersonRole {22
name
A 1dNumber
| |

PassengerRole EmployeeRole

! jobFunction
®
P P

. sk
Booking
seatNumber

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

date

Prototyping a class diagram on paper

e As you identify classes, you write their names on small cards
e As you identify attributes and responsibilities, you list them on
the cards
If you cannot fit all the responsibilities on one card:
» this suggests you should split the class into two related classes.
e Move the cards around on a whiteboard to arrange them into a
class diagram.

e Draw lines among the cards to represent associations and
generalizations.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

ldentifying operations
eOperations are needed to realize the responsibilities of each
class

e There may be several operations per responsibility

e The main operations that implement a responsibility are
normally declared public

e Other methods that collaborate to perform the responsibility
must be as private as possible

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

An example (class collaboration)

EmployeeRole
+ getName() {1d="e2”}

crewMember |

Airplane

addLinkToSpecificFlight() {id="a2, d3”}
deleteLinkToSpecificFlight() {id="d2"}

e 0.1
Bookjng = . SpecificF]ight o
Booking() {id="c2”} + specifyAirplane() {id="al”}
- + createFlightLog() {id="b1""}
* + changeAirplane() {1d="d1”}
+ findCrewMember() {1id="el”} 1
addLinkToBooking() {id="c3"}
1 0.1
PassengerRole Flightlog

+ makeBooking() {id="c1"}
addLinkToBooking() {id= “c4”}

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

FlightLog() {1d="b2""}

0.1

SpecificFlight |* Airplane

Class collaboration ‘a’

(1 Making a bi-directional link between two existing objects;

[l e.g. adding a link between an instance of SpecificFlight
and an instance of Airplane.

[]

1 1. (public) The instance of SpecificFlight

makes a one-directional link to the instance of Airplane
then calls operation 2.

1 2. (non-public) The instance of Airplane
makes a one-directional link back to the instance of

SpecificFlight
Airplane
="e27} addLinkToSpecificFlight() {id="a2, d3}
¢Member | deleteLinkToSpecificFlight() {id=“d2”}
0.1
— SpecificFlight

+ specifvAirplane() {id=“al”}
+ createFlightLog() {id=“b1"}

Hari Prasad Pokhrel (hpokhrel24@gmail.com) e
addLinkToBooking() {1d="c3”} 14|

SpecificFlight 1 0.1 FlightLog

Class collaboration I:J’ 1) FightLog (]

1 Creating an object and linking It to an existing object

[1e.g. creating a FlightLog, and linking 1t to a
SpecificFlight.
[]

1 1. (public) The instance of SpecificFlight

calls the constructor of Fl1ghtLog (operation 2)

then makes a one-directional link to the new instance of
FlightLog.

1 2. (non-public) Class Fl1ghtLog’s constructor

makes a one-directional link back to the instance of
SpecificFlight.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

PassengerRole Booking SpecificFlight

+ makeBooking [c1] 1 | Booking [c2] o1 addLinkToBooking [c3]
addLkaoBooking [c4]

é)lg}g,a?ncollabora on. '

INg an association class, glven two eX|st|ng ObjECtS

[1 e.g. creating an instance of Booking, which will link a
SpecificFlight to a PassengerRole.

0 1. (public) The instance of PassengerRole
calls the constructor of Booking (operation 2).

0 2. (non-public) Class Booking’s constructor, among its other actions
makes a one-directional link back to the instance of PassengerRole
makes a one-directional link to the instance of SpecificFlight
calls operations 3 and 4.

01 3. (non-public) The instance of SpecificFlight
makes a one-directional link to the instance of Booking.

01 4. (non-public) The instance of PassengerRole
makes a one-directional link to the instance of Booking.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

SpecificFlight

0.1

Airplane

Class collaboration ‘d’ [~eessmmem

1 Changing the destination of a link

addLinkToSpecificFlight [a2, d3]
deleteLinkToSpecificFlight [d2]

(1 e.g. changing the Arrplane of to a SpecificFlight, from

atrplaneltoairplane2

L1 1. (public) The instance of SpecificFlight

deletes the link to atrplanel

makes a one-directional link to airplane2

calls operation 2
then calls operation 3.

0 2. (non-public) alrplanel

deletes its one-directional link to the instance of SpecificFlight.

0 3. (non-public) alrplane2

makes a one-directional link to the instance of SpecificFlight.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

EmployeeRole |,

+ getName [e2]

Class collaboration ‘e’
1 Searching for an associated instance

crewMember

SpecificFlight

+ findCrewMember [e1]

[1 e.g. searching for a crew member associated with a
SpecificFlight that has a certain name.

[

[1 1. (public) The instance of SpecificFlight

creates an lterator over all the crewMember links of the

SpecificFlight\

for each of them call operation 2, until it finds a match.

[0 2. (may be public) The instance of EmployeeRole

returns Its name.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Customer Order

narme 0.7 | date

address A\ status

.::'ssI:u»::fr:th:-.-'e\H caloTa
| calcTotal
—» Payment *
abstract class™ d J Iz 1 calcTotalWeight
amaunt 1{}
role name-
neralization -\ _
*) [ﬁ line tern | 1.% €——u ,Imﬂmpfrfrfr
OrderDetail f' ltem 4
Credt Cash Check | v —
guantity . shippingiWeight
number cachTendered | | name faxotatus 0. description
fype hanklD
erpDate calcsubTotal getPriceF orGuantity
authotized calceight getieight |
authorized
navigability

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

class name

attributes

operations

Packages in Class Diagrams

1 Complex Class Diagrams are Abstracted

1 Packages Contain Multiple Classes and are Associated and
Linked to One Another
O Dependency Arrow is Dashed
O Indicates that One Package Depends on Another
O Means that Changes in Destination (Dependee - Arrow Head)
Can Possible Force Changes in the Source (Dependent — Arrow
Tail)\
1 Supports Rudimentary SW Architecture Concepts

1 However, no Checking/Enforcement of Dependencies In
Subsequent Diagrams

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Package

1 A package Is a general purpose mechanism for organizing
elements into groups.

[1 Packages help you organize the elements in your models so that
you can more easily understand them.

1 Packages also let you control access to their contents so that you
can control the seams in vour svstem's architecture.

name

Sensor fusion o—/

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Simple and Extended Package

Client

+ OrderForm
+ TrackingForm
- Order

simple names

Business rules
extended packages

enclosing package name

[— / package name
.—r'/

M=
Sensors::Vision path names
{version = 2.24}

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Package

1 A package may own other elements, including classes, interfaces,
components, nodes, collaborations, use cases, diagrams, and even
other packages.

1 A package forms a namespace, which means that elements of the
same kind must be named uniquely within the context of its enclosing
package.

O For example, you can't have two classes named Queue owned by the
same package, but you can have a class named Queue in package P1 and
another (and different) class named Queue in package P2.

O The classes P1::Queue and P2::Queue are, in fact, different classes and
can be distinguished by their path names.

O Different kinds of elements may have the same name.
1 Packages may own other packages

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Packages may own other packages

graphical nesting

Client
Client +0OrderForm
+ OrderForm - Order
+ TrackingForm
- Order

+ TrackingForm

textual nesting

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Importing and Exporting

Servet | The public parts of a package
+ Database Client ” d .
+ LoggingService L+ OrderFomm are called Its exports.

+ TrackingForm The package
- Order

GUI exports two classes,
Window and Form.

exports

Policies i «import»
S OrdarRUIEE ! EventHandler is not exported by
- GUI::Window <') GUI:
: i EventHandler is a protected part
\W | «importy of the package.

e+ VWindow
e+ Form <~ - — -
EventHandler

In this example, Policies explicitly imports the package GUI. GUI::Window and
GUI::Form are therefore made visible to the contents of the package Policies.
However, GUI::EventHandler is not visible because it is protected.

Because the package Server doesn't import GUI, the contents of Server don't have
permission to access any of the contents of GUI.

Similarly, the contents of GUI don't have permission to access any of the contents of
Server.

Generalization Among Packages

GUI

+ Window
+ Form
EventHandler

generalization

WindowsGU|

+ GUI:Window

+ Form

GUI:EventHandler
+ VBForm

MacGUI

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Modeling Groups of Elements

User Services

«<import>»

<_

Business Services

«<imporit»

<_

Data Services

Harm PrasadPoktret—(hpokhret2a@yrmait.com)

Modeling Architectural Views

Design View Implementation View|

Use Case View

Process View Deployment View

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Example Package

'\

package

u_|———

Accounting = ————— | ——— Bank
M
:..; dependency
Ordering |— — — —>{ Shipping \
|4 | M
-]
al)
-
CustomerDB StockDB

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Static: Component Diagram

1 Component Diagram: High-Level Interaction and
Dependencies Among Software Components

1 Captures the Physical Structure of the Implementation
1 Built As Part of Architectural Specification

1 Purposes:
O Organize Source Code
O Construct an Executable Release
O Specify a Physical Database

1 Main Concepts:Component, Interface, Dependency,
Realization

1 Developed by Architects and Programmers

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Component

A component is a physical and replaceable part of a system that
conforms to and provides the realization of a set of interfaces.

o Graphically, a component is rendered as a rectangle with
tabs.

name

kerne|32.d||-—/

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Components and Classes

1 In many ways, components are like classes: Both have names; both
may realize a set of interfaces; both may participate in dependency,
generalization, and association relationships; both may be nested,
both may have instances; both may be participants in interactions.

However, there are some significant differences between components
and classes.

O Classes represent logical abstractions; components represent
physical things that live in the world of bits. In short, components
may live on nodes, classes may not.

O Components represent the physical packaging of other logical
components and are at a different level of abstraction.

O Classes may have attributes and operations directly. In general,

components only have operations that are reachable only through

their interfaces. |
Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Components and Classes

[0 A component is the physical implementation of a set of other logical elements, such
as classes and collaborations

I shows, the relationship between a component and the classes it implements can be
shown explicitly by using a dependency relationship.

fraudagent.dll component

g

L | %

FraudAgent \i/ PatternSearch

FraudPolicy

Hari Prasad Pokhrel (hpokhrel2d@gmail.com

classes

Components and Interfaces

An interface is a collection of operations that are used to specify a
service of a class or a component. The relationship between

component and interface is important.

iconic form

image.java componzant.java
/ ImageObserver

dependency interface realization

expanded form / \
ainterfaces
; ; ImageObserver
image.java component.
- - 4~ -">| abort : int {final static}) [<]--®- - - java

emor ; int {final static}

imagellpdate() : Boolean

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

All the most

common component-based
operating system facilities
(such as COM+, CORBA,
and Enterprise Java Beans)
use interfaces as the glue
that binds components
together.

Kinds of Components

1 Deployment components.
O These are the components necessary and sufficient to form an executable
system, such as dynamic libraries (DLLs) and executables (EXES).
1 Work product components.

O These components are essentially the residue of the development process,
consisting of things such as source code files and data files from which
deployment components are created. These components do not directly
participate in an executable system but are the work products of
development that are used to create the executable system.

1 Execution components.

O These components are created as a consequence of an executing system,
such as a COM+ object, which is instantiated from a DLL.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

HelloWorld.class

hello.htmil

Q ’
ir o
i

~ hello.jpg

hello java

--->

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Modeling Executables and Libraries

1 To model executables and libraries,
1 Identify the partitioning of your physical system.

1 Model any executables and libraries as components, using
the appropriate standard elements

(1 If it's important for you to manage the seams in your system,
model the significant interfaces that some components use
and others realize.

1 As necessary to communicate your intent, model the
relationships among these executables, libraries, and
Interfaces.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Hari

|] animator.exe

{version = 5.0.1}

raytrce.dll

[I

\/

render.dll

Prasad Pokir

| (hpokhrel24@gmail.com)

dlog.dll

‘“—1 wrfrme.dll

D

Modeling Tables, Files, and Documents

animator.hlp

-
== N
— T dlog.dll
i L
animator.exe
frorsion =500} - - - - - - - D>
animator.ini
—— - 4] ™ - 5
—— : ;.
== Y .ﬁ wrirme.dil
E— render.dll
P
raytrce.dll
-~ - £ .
il shapes.tbl

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Modeling an AP|

* AnAPI is essentially an interface that is realized by one or more
components. As a developer, you'll really care only about the interface
itself; which component realizes an interface's operations is not
relevant as long as some component realizes it.

_ animator.exe

{version = 5.0.1}

é ‘ IRendering

Hari Prasad Pokhrel (hpokhr%4@ﬁr{§% ﬁ%ﬂ) IModels

IScripts

Modeling Source Code

render.h render.cpp
{version = 5.3} {version = 5.3.7}

_ B

N

< ______

-
-
-

rengine.h -~
{version = 4.6}

: *\ colortab.h
poly.h N {version =4.1)

o

L
o
-
1
=]
=+
1l

o

—

[

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Component Diagram

e Captures the Physical Structure of the Implementation

page find.html
Te

ﬂﬁyperlinkn

executable

find.exe

index.htmi

-

dbacs.dll

nateng.dll
library 9

component
_.
_.___.___________,_._-3.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Static: Deployment Diagram

1 Deployment Diagram: Focus on the Placement and Configuration of
Components at Runtime

1 Captures the Topology of a System’s Hardware
1 Built As Part of Architectural Specification

1 Purposes:
O Specify the Distribution of Components
O Identify Performance Bottlenecks

1 Main Concepts: Node, Component, Dependency, Location
1 Developed by Architects, Networking Engineers, and System Engineers
1 Focus is on physical aspects of a system.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Node

e A node is a physical element that exists at run time and
represents a computational resource, generally having at least
some memory and, often processing capability.

A node typically represents a processor or a device on which
components may be deployed

name

egb_server e4—

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Deployment Diagram

e Captures the Topology of a System’s Hardware

Internet node
Modem bank

/\ g Y

connection «Processor» «Processor»
caching server caching server
e
? node
e
«network» local network o
|

«Processor:» «Processor» «processor» «Processor:»
primary server server server server

Hari [Prasad Pokhrel |(hpokhrel24@gmail.co

Deployment Diagram

1 Deploy Components onto Nodes

/

BloodAnalyzer

(COTS)
Analyzer

/

HospitalServer:Host

O— PatientRec
ypdate DBMS

/

/

Hari Pr

/fechnicianPC:PC y
O_

LabAnalyzer

results
sad Pokhrel (hpokhrel24@gmail.com)

Nodes and Components

1 Components are things
— G that participate in the
- execution of a system;
nodes are things that
execute components.

1 Components represent the
physical packaging of
otherwise logical
elements; nodes represent

/ the physical deployment of
components COmponentS.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Connections

[The most common Kind of
relationship you'll use among
nodes is an association.

/_ﬂ_‘? R I In this context, an association
e 10T Etnereb__——" represents a physical connection
| i o\ _ among nodes, such as an Ethernet
\ connection, a serial line, or a
L/ i) | | FARAM shared bus, as Figure shows
||'
console
A WRS23

e YOU can even use assoclations to model indirect
connections, such as a satellite link between
distant processors.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Combining
Component and Deployment Diagrams

Bank Server

CustomerDB

==[atabasze== E Worgage Application

|
' (5
_____ |
mt‘;ageﬂpplicatiun
M

interface

Feal Estate Server

% Listing

— =

==5torage==

MultipleListings

5N

IListing

aPc -~
—

TCPIP % Buyerlnterface

TCRIP

«

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

connection

Modeling Processors and Devices

1 Because all of the UML's extensibility mechanisms apply to
nodes, you will often use stereotypes to specify new kinds of
nodes that you can use to represent specific kinds of
processors and devices.

1 A processor IS a node that has processing capability, meaning that it
can execute a component.

1 A device 1s a node that has no processing capability (at least, none
that are modeled at this level of abstraction) and, in general,
represents something that interfaces to the real world.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

«10-T Ethernets

22

kiosk

#RS-232»

«processars
server

console

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

RAID farm

Modeling the Distribution of
Components.

:Kiosk «10-T Ethernets

Deploys b
USEr.exe \
S : Server ' RAID farm

processorSpeed = 300 mHz
memory = 128 meg

¢ : console /
Deploys
o
Deploys «RS-2325 dbadmin.exe
admin.exe tkimsir.exe
config.exe /

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Dynamic: Interaction Diagrams

A series of diagrams describing the dynamic behavior of an
object-oriented system.
e A set of messages exchanged among a set of objects within a
context to accomplish a purpose.

o Often used to model the way a use case Is realized through a
segquence of messages between objects.

e Interaction diagrams are used for capturing dynamic nature
of a system

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Dynamic: Interaction Diagrams (Cont.)

 The purpose of Interaction diagrams is to:
e Model interactions between objects
e Assist in understanding how a system (a use case) actually works

e \erify that a use case description can be supported by the
existing classes

e |dentify responsibilities/operations and assign them to classes

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Interaction Diagrams (Cont.)

o UML

e Collaboration Diagrams
Emphasizes structural relations between objects

e Sequence Diagram
Sequence diagrams are used to capture time ordering of message flow

Generally a set of sequence and collaboration diagrams are used
to model an entire system

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Two kinds of UML Interaction Diagrams

e Sequence Diagrams: show object interactions arranged in
time sequence, vertically

e Communication Diagrams: show object interactions
arranged as a flow of objects and their links to each other,
numerically

o Semantically equivalent, structurally different
e Sequence diagram emphasize time ordering
e Communication diagrams make object linkages explicit

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Interaction and Message

An interaction is a behavior that comprises a set of messages, exchanged
among a set of objects, to accomplish a specific purpose.

A message Is the specification of a communication between objects that
conveys information, with the expectation that some kind of activity will
ensue (follow).

From the name Interaction it is clear that the diagram is used to describe
some type of interactions among the different elements in the model

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Interaction..

e This interactive behavior is represented in UML by two diagrams
known as Sequence diagram and Collaboration diagram.

e Sequence diagram emphasizes on time sequence of messages and
collaboration diagram emphasizes on the structural organization of
the objects that send and receive messages

» The purposes of interaction diagrams are to visualize the
Interactive behavior of the system

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Interaction..

e S0 the purposes of interaction diagram can be describes as:
e To capture dynamic behavior of a system.
e To describe the message flow in the system.
e To describe structural organization of the objects.
e To describe interaction among objects.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Dynamic: Sequence Diagram

1 Sequence Diagram: For aTask, Indicates the Object Interactions
Over Time that are Needed

1 Captures Dynamic Behavior (Time-oriented)

1 Purposes:
O Model Flow Of Control
O Illustrate Typical Scenarios
O Provide Perspective on Usage an Flow

1 Main Concepts: Interaction, Object, Message, Activation

1 Notes:

O Dynamic Diagrams are Complementary

O Provide Contrasting Perspectives of “Similar” Information and
Behavior

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Seqguence Diagram

A sequence diagram Is an interaction diagram that emphasizes
the time ordering of messages.

A lifeline 1s a vertical dashed line that represents the lifetime of
an object.

A focus of control is a tall, thin rectangle that shows the period
of time during which an object is performing an action.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Sequence Diagram Notation

c: Client

. Ticket Agent

«Create»

setltinerary(i)

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

calculateRoute()

Types of Messages

e Synchronous (flow interrupt until the message has
completed.

e Asynchronous (don’t wait for resp'onse)

~N
e Flat — no distinction between sysn/async

» Return — control flow has returned to the caller.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Create message

A create message represents the creation of an instance in an interaction. The create message is
represented by the keyword «create». The target lifeline begins at the point of the create message.

Destroy message

A destroy message represents the destruction of an instance in an interaction. The destroy message is
represented by the keyword «destroy». The target lifeline ends at the point of the destroy message, and is
denoted by an X.

Synchronous call message

Synchronous calls, which are associated with an operation, have a send and receive message. A message is
sent from the source lifeline to the target lifeline. The source lifeline is blocked from other operations
until it receives a response from the target lifeline.

Asynchronous call message

Asynchronous calls, which are associated with an operation, typically have only a send message, but can
also have a reply message. In contrast to a synchronous message, the source lifeline is not blocked from
receiving or sending other messages. You can also move the send and receive points individually to delay
the time between the send and receive events. You might choose to do this if a response is not time-
sensitive or order- sensitive.

Asynchronous signal message

Asynchronous signal messages, are associated with a signal. A signal differs from a message in that there
is no operation associated with the signal. A signal can represent an interrupt or error condition.To
specify a signal, you create an asynchronous call message and change the type in the message properties

ViaWi Prasad Pokhrel (hpokhrel24@gmail.com)

Synchronous and Asynchronous Calls

» |If a caller sends a synchronous message, it must wait
until the message Is done, such as invoking a subroutine.
» It a caller sends an asynchronous message, it can
continue processing and doesn’t have to wait for a response.
»You see asynchronous calls in multithreaded applications
and in message-oriented middleware.

» Asynchrony gives better responsiveness and reduces the

Hari Prasagl Pokhrel (Rpokhrel24@gmail.cqm)
temporal coupling but'is Rarder to debug.

Sequence diagrams

e Some control information can also be included.

e Two types of control information are particularly valuable:

e A condition (e.g. [invalid] or [OK]) indicates that a message is sent,
only if the condition is true.

e An iteration (*) marker shows the message Is sent many times to
multiple receiver objects as would happen when a collection or the
elements of an array are being iterated. The basis of the iteration can
also be indicated e.g. [for every book object].

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Sequence diagrams

(Classh Instance :ClassB Instance

|
rmessage] '
yed O -

messages ()
-
messagel () i
>
|
|| |
| |
A myB : B
I I
I I
* doOne FI :
|
|
doTwo b
doThree F; _

Hari Prasad Pb'khrel (hpokhrel24@gmaiI.(:om)l

Lifeline box

[Wiew full size image]

ifeling box representing the class A

ifeling box reprasenting an A fifaline box resrasanting & A m':' mﬂi":‘“gﬁiﬂm“
annamed irstarce of class Sale | namiesd instance nmm’ g:r 2 Inelncine

ih . e i

Sale &1 : Sake 'il'l'll:_flnl:r::l.lb

1 1 1

1 1 1

i i

1 1 i

1 1 1

| ! |

List & an interface A
ifeling box mepresenting an l feling box wepnisanting L
nstenco of an Armaplisd cloag, ong inslance of class Sade, in WAL |.% we could nol use an
parametarized iemplatizec) to salected from the sales inledace hewe, bul in LML 2, this {or
nokl Sale abjecs ArrayList <Sale» collection | an abstract class) is legal
uag' N N
ArayList<Sale> O o sales[|] : Sale | _ e '.J"t

i ™~ i

: related B :

1 1

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Messages

. Register : Sale
I I
doX \ :
O .
* > doA .
I
doB '
a found message A -
whose sender will not .
be specified - doC: >
| - d_n:nD
execution specification A
bar indicates focus of h..
control typical sychronous meassage
shown with a filed-arrow line

The first message doesn’t have a participant that sent it, as it comes fromr

an undetermined source. It’s called a found message.
Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Reply or Returns

. Register : Sale
I) I
doX | :
. -
d1 = getDale oL
L
celDate ot
e aDate __________
~ |

*Using the message syntax returnVar = message(parameter).

eUsing a r%pI%/ {or return me_ssan%e line at the end of an activation bar.
Hari Prasad Pokhrel (hpokhrel24@gmail.co

Messages to "self" or "this"

? clear

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Creation of Instances

nole that newly created

: Register Sl objects are placed at their
T | - creation "height”
I |
I
| i
makePayment{cashTendered) |
_ _create(cashTendered) | . poymen
I 1
|
authorize ,,| :
i
| |
I i
| i
T | ;
I |
I

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Object Lifelines and Object Destruction

Sale
- _'-':_r'e_a_t%{tza_sblim.ﬂérgé}l__,{ - Payment h
T the wdestroy» stereotyped
> | message, with the large
| . X and short lifeline
wdestroys ""X o indicates explicit object
destruction

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Diagram Frames

- =]
: makaeMewSake -
1
A T :
a8 UML |'i:lﬂ|:' . le ITII:'!ITE kEems) :
. -~ enteritemiitam|D, quantit
frame, with a s : i guantity) >
beoolean guard | |
DI 3 description, total !
I I
i I
1]
1 1
1 1
! andSale I'*:
1]
The following table summarizes seme commen frame operators:
Frame Operator Meaning
alt Alternative fragment for mutuzl exclusion conditional logic expressed in the guards.
loop Loop fragment while guard is true. Can also write foop{n) to indicate loeping n timas. There
Is discussion that the specification will be enhanced to define a FOR loop, such as loop(i, 1,
10)
opt Optional fragment that executes if guard is true.
par Parallel fragments that execute in parallel.
Haril B3883d Pokhrel | GiftRHRAA @HIR- IR A!Y one thread can run.

Conditional Messages

‘ - Foo - Bar
| x >
[|
I [

opt | [color = red | :
[|
: calculate I":
! !
| |
I |
[|
| ¥y >

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

IVIULU(].II)’ LLAUVIUOIVO VUIIUITILIVIIQU

Messages

calculate

calculate

1

AN
% B
A o
-
=

v

e e ot Sl SN »

i@
e I R n

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Nesting of frames.

: Foo
: i
[}
:
opt ' [color = red]

|

|'I=HI=IIIFA‘I{I'IZI/J

calculate

v — e — —— — — — —

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

an Order an Crder Line aProduct aCustomer

e | I L I I
M:— getCuantity |
getProduct I I participant | T titeline |
Townd
message o 8Product I I
., activation
getPricingDetails I * return | |
| gl |
l I |
ml:ulalaEas&Pn:& L salf-call | |
-l
[| I | I
mesIage

cal-u:ulalal'_':uscnunls [| |

| |

5 B B— getDiscountinfo

I | >IJ_-I

The first message doesn’t have a participant that sent it, as
It comes from an undetermined source. It’s called a found

Hari M@S@ggaé_(hpokhreIM@gmail.com)

UC%UCI ve UIa‘dl alll 1Vl

casSe.

Library

Conivotler

T
s

MNUUNICUIIUYVYVY UOCU

Tim d Wl erme be rB oEro wsi g
]

‘Librarny

Ttend

I
|
I
I
I
|
I
I
|
I
I

I,

=

renevwBook
> |
| |displ ayBomowing) |
| I
| joclectiBooks .0 | |books elected
| | g
I [resemed] I e Irese med]
| apalogy ' logy
: :_'.r conflsm
| I
| I
i i
I con fism I
T

Héri Prasad Pokhrel (hpokhkel24@gmail.com)

qdaleﬁe—mbeﬂ'lﬁloui'

=t

an

Full Si1

‘Barrier

‘Valid card

‘CardReader

‘Sensor

‘CarPark

Seguence diagram for car parking

‘User

L
D
9]
—_
.......................... 7 NREEItEEEE LR R
0
v
T B R P
A 5
fa
-
o B
g =
= S -
= 2 s
- b =]]
- — - o
A o =
ﬂq,..,\ |9 = e —~
o - ~ = S
z L% L 8
T R . SR S R e) Q
-) = —
b L =
2 = <
%5)
= z =
DH. — (@)
<
o
[«B]
| —
, * e
B R L .m IIIIIIIIIIIIIIIIIIIII B e S ——— - ..x”._ .IIIIIWI
—_
o =] ﬂ m-. ~
.- 2 v
b = D
= ' 5 i -4 S
I B 5 2 = 2 <2
3 J = -
S S = AR
- . 5 =)
Yy T = @] v o~ o
B w0 e T s — n IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII d -
T 3
S <
'
(al
=
T
Y 7

\JUL‘UUII\:U UIGUI(XIII Ul 1T1THIANCUIT QYIIIUIIL

use case

: Reqister ' Bale

makePaymenticashTendered)

-

makePaymenticashTendered)

create{cashTenderad)

» . Payment
an activation box shwingw el |

the focus of control

The sequence diagram shown in Figure makePayment is read as follows:

1. The message makePayment is sent to an instance of a Register. The sender is not identifie
2. The Register instance sends the makePayment message to a Sale instance.

3. The Sale instance creates an instance of a Payment.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

lidateLoginjuserlD password)

| v

click DK

display(]
displayi)

I enter user |0 and passwordi)

S EE A

T

clickLogini)

pANI H M 17 A A\
Customer
I
1
[

Sequence Diagram

e Captures Dynamic Behavior (Time-Oriented)

| .
object nteraction
K—- t: Thread : Toolkit
al:run(3) o lifeline
1
/. run() ' callbackLoop()
sequence /' J ‘/,, creation
label
message ' croate ‘
call ————p» p: Peer
focus of control —_| hﬂ”meapﬂseg '.

e recursion —_|

“*____“—“:-_—-—'—retum

«destroy» o 9‘(
/

" : destruction

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Sequence Diagram

) aChain
object »| HotelChain

window
Lserinterface

makeReserationvoid |
I

B«

==

makeReseration(yvaid

aHotel
Haotel

Jt\ message

deletion e

activation bar

——— lifeline

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

e condition
[isRaoom]
—h.

aReservation
Resemation

fe== Witﬂuﬁm
for each day] isRoom=availahled:boolean

creation Z _

"—\—_______.r

alotice
Confirmation

note _‘\\1

If a room is available for
each day of the stay, make
a reservation and send a
confirmation.

—

N

Sequence Diagram

HCA

alurse
Staff

aMedicallLab

Lah

date:=reserveLabitest)

Dk =approveitest)

L]

aninsuranceCompany
Insurer

asynchronous
Mmessage

[COF] scheduleltest date)

T

:

Q

Reserve the lab for a patient test.
If the insurance company approves,
schedule the test.

Hari Prasad Pokhel (hpokhrel24@gmail.com)

Dynamic: Collaboration Diagram

1 Collaboration Diagram: Structured from the Perspective of
Interactions Among Objects

1 Captures Dynamic Behavior (Message-oriented)

1 Purposes:
O Model Flow of Control
O Illustrate Coordination of Object Structure and Control
O Objects that Interact with Other Objects
O Are Collaboration Diagrams Really FSMs?
O Sequence:: Time vs. Collaboration::Message

1 Main Concepts: Collaboration, Interaction, Collaboration
Role, Message

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Messages, Links, and Sequencing

sequence number message g

1.1 : getLastCheckpoint()
o =

1 : getPostionAtTime(t)

_...
1 AirTrafficPlanner p : FlightPlan
@ @
N\ \
hS ohject object
link

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Links and Associations

class n:izllss
K association \
a1 T \ . —
Fearson Company
employee employer

+ selCompensation(s : Salany)
+assign{d : Department) &

- operations

meassaqge

assign{development)

-
p . Ferson ' : Company
- | H‘\
named object \ ik anonymous objact

A link 1s a semantic connection among objects.

In general, a link is an instance of an association.

As Figure shows, wherever a class has an association to another class, there may be a
link between the instances of the two classes; wherever there is a link between two
objects,one.object can send x message fo the other object.

messagel) —=

doOne

—

‘Classdlnstance

1 message?@l
2: message3()]

ClassBlnstance

1: doTwo

2. doThree

\J

myB : B

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Collaboration Diagram for book renew
use case

iLibrary
Booek & *find
Ragister

o mp date
tﬂrﬂm/
[rese reed] 5: be okSelested ¥
8: ap ology —
T 7: ap olegy
1: renewBook

3 displagBorsoms
i - Z: findMembe iB o1 Fowing

4 selectBeoks
—

12 conbirm

- \

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Procedural Sequence

- - — - - e e m e e e ——

sequence number

2 : clickAl(p)

message

2.2 : putRecentPick(l)

2

I

B

' Cache

c . Controller

!

2.1 ;1 = findAt(p)

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

nested flow of control

Fig: Example of collaboration diagram
for makePayment

direction of mess;?e first internal messa%

o

o’:
makePayment(cashTenderesl) . Register 1 makePayrrgent(cashTenderec Sale
0 o
link line 1.1 create(cashTendered;
0
first messag} parameterw .Payment
— creation indicated wi
Instance "Create” message

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Common Interaction Diagram Notation

Sale Lals £1: Sae

c. 0. 9.

class H inslance H lﬂTEdiﬂtanuaH

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Basic Message Expression Syntax

1 The UML has a standard syntax for message expressions:
(1 return := message(parameter : parameterType) : returnType

1 Type information may be excluded if obvious or
unimportant. For example:

[1 spec := getProductSpect(id)
1 spec := getProductSpect(id:ItemID)
1 spec := getProductSpect(id:ItemID) ProductSpecification

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Basic Collaboration Diagram Notation
e Links

e Alink is a connection path between two objects; it indicates some form of
navigation and visibility between the objects is possible . More formally, a
link is an instance of an association. For example, there is a link.or path of
navigation.from a Register to a Sale, along which messages may flow, such as
the makePayment message

1: makeFayment{cashTendered) —»
2 fool] —=
2.1: bar(y |

-+

Hari glfﬂ-;d Lgkﬁré];‘%k%guquﬂf@gmail.com) Ik ling L

Messages

”“E'”W meg2) —
Zmygd) —
| Imsgd)
Register
+— 11:maga)
0

all messanes fiow on the same link H i

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Messages to "self" or "this”

mag1() 1|,

- Fegisier

1- edear() T

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Creation of Instances

[0 Any message can be used to create an instance, but there is a convention in the UML to use a message

named create for this purpose. If another message name Is used, the message may be annotated with a
special feature called a UML stereotype, like so: «create».

[1 The create message may include parameters, indicating the passing of initial values. Furthermore, the
UML property {new} may optionally be added to the instance box to highlight the creation.

highlight the creation.

create message, with optional initializing parameters. This will k
narmally e interpreted as & corstructor call.

O
1 ereate({cashier) —»
. Register Sale {newd
gcreates
1: makei{cashier)
. Register S Sale {new]

if an unobvious creation message name is used, the ﬁ

Hari Prasad Pokhrénegfaderapke fetratyned for clarty

Ivicooayt INUITivel ocyuciliuiily

[0 The order of messages is illustrated with sequence numbers
1.The first message is not numbered. Thus,msg1() is unnumbered.

2.The order and nesting of subsequent messages Is shown with a legal numbering
scheme in which nested messages have a number appended to them.

1 Nesting is denoted by prepending the incoming message number to the out going
message number.

| ssd e, ALA LA AL L
' L L

1. mag2()—=

magl{j—= Classh

0

ot numbered ﬁ g 1-1:mag3()y l

egal numbering ﬂ
‘ LlassC

o |

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Conditional Messages:

1 A conditional message is shown by following a sequence number
with a conditional clause in square brackets, similar to an
Iteration clause. The message Is only sent if the clause evaluates
to true.

conditional message, with test ﬁ
messagell) | _
I:r -
1[color —rad] : calculate()

- Bar

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Mutually Exclusive Conditional Paths

urnconditional after
either msg2 or magd -ClassE 1a and 1b are mutually
exclusive conditional paths
o
2:magb(h| _
o
—— 1a [testi1] - m=sg2() .
—megll} | -classa -ClassB ‘
Ths [mzt te=t1] - mzgdd) J, Ta.1: msg3i)
—f
ClassD 1b.1: msgai) -ClagsC

Froure 15.13 Mutally exclusive messaoes.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

lteration or Looping

e |teration notation is shown in Figure below. If the details of
the iteration clause

e are not important to the modeler, a simple **’ can be used.

- -

runEmuiaton) | Simuator k=M num 2= nextini(} | Randam ‘

tzraior i ndicated with a* and an optional
teratior clause following the s=gquence number

Figure 15.14 Iteration.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Collaboration Diagram

o Captures Dynamic Behavior (Message-Oriented)

¢ : Client

collaboration diagram

1 : «creates»
link —e | 2:setActions(a, d, 0)

3: «destroy»
“Iﬂﬂal H] me Ssag e
€ | ¥
. Transaction | global p : ODBDProxy
{transient}
object 2.1 : setValues(d, 3.4)

2.2 : setValues(a, "CO")

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Collaboration Diagram

e Convey Same Info as Sequence
Diagrams but Focus on Object Roles

window:Userinterface

message

{H A makeReseration(oy aid

aChain:HotelChain

-« object

{31 A1 makeResenation(ovoid

~ sequence number

aHotel:Hotel Y T, i aMotice:Confirmation
T2 111 2 fisRoom) —== |3Reservation:Reservation | 4 4 4 5. —

iteration -« self link

1.1.1.1*for each day] isRoom:=availabled:boolean —T=

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Collaboration Diagram

2 getllser{ID)

%
1: sendPrivateMessagel) m
Liser

Comcenter z
hlanager
A displayMessagel)
— g”& sendMessager)
Comcenter Messagekilter
ﬁ..
=i

4: isllserAllowed (LD
Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Dynamic: Statechart Diagram

[1 Statechart Diagrams: Tracks the States that an Object Goes
Through

1 Captures Dynamic Behavior (Event-Oriented)

1 Purposes:
O Model Object Lifecycle
O Model Reactive Objects (User Interfaces, Devices, etc.)
O Are Statecharts Complex FSMs?
O Sequence:: Time vs. Collaboration::Message vs.
Statechart::Event

1 Main Concepts: State, Event, Transition, Action

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

State, Event, and Signal

A state Is a condition in which an object can reside during Its
lifetime while it satisfies some condition, performs an activity,
or waits for an event.

An event Is a significant occurrence that has a location in time
and space.

A signal Is an asynchronous communication from one object to
another.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

State Notation

ES
=

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

-~

Heating

[Activating J

_

\

State Machine and Transition

A state machine Is a behavior that specifies the sequences of
states that an object goes through in its lifetime, In response to
events, and also Its responses to those events.

A transition Is a relationship between two states; it indicates
that an object in the first state will perform certain actions,
then enter the second state when a given event occurs.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Entry and Exit Actions

An entry action is the first thing that occurs each time an object
enters a particular state.

An exit action is the last thing that occurs each time an object
leaves a particular state.

4 N

Tracking
entry/setMode(onTrack)

exit/setMode(off Track)
- /

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Statechart

e Use state diagrams to demonstrate the behavior of an object through
many use cases of the system. Only use state diagrams for classes
where it is necessary to understand the behavior of the object through

the entire system.

e Seminar Registration

student enrolled
[aeat avallabie)! 1:

1 addStudent() | “~non For Enrolimant)
schaduled CipEn i |l
Proposad Echeduled J = sniryl logSize()
. y closed
A

cancalled cancelled student enrclled
[ro seat available] f

addTovWaitingList{)
!

seat availabile v
Full) (Closed to Enrollment)

saminar Splli enrodl studant ! chosed =
add TaWaiting Lisi{): = | entry notify nstructar()

student dropped -.. considerspiit|) A .,
[no seal available] studant dropped cancelled
. e [saal available] |
cance enmalFromWaiingList{)

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

-

Statechart

e Following are the main purposes of using Statechart diagrams.
e To model dynamic aspect of a system.
 To model life time of a reactive system.
e To describe different states of an object during its life time.
e Define a state machine to model states of an object.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Statechart

e Before drawing a Statechart diagram we must have clarified the

following points:

e |dentify important objects to be analyzed.

e |dentify the states.
e |dentify the events.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

pick up
the phone

hang up
the phone

-~

[valid & incomplete]

dial
[inwalid]

imvalid
number
message

busy tone

dial

Chialling I

dial
complete]

Zonnected

Ringing

-,

|
Statechart: Seminar Lifecvcle
- T
Enrallment
Open For
@ Proposed Enroliment
student dropped
[seminar size > 0]
classes
Closed to end
Scheduled Enrollment
L student dropped
cancelled [seminar size = 0]

term classes
started

Enrollment

 Top Level State
Machine of Seminar

canceled student dropped

[seminar size > (]
[seminar size = (]

-~

Hari Prasad Pokhrel (hpokhrel

Statechart Diagram

Statechart diagram of an order management system

Initial state Intermadiate Tranaition
/ the cbject ‘/ stata //
Initiali Hormal
axit
ration
Select normal or
idle Send order request Sl i
Abnormal
axit Action Confirm order
2 Final state {Event)
AL {Fallure)
State
Order confirmation
Final
Stata \L
Complates
transaction

L Dispatch order

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Activities
An activity Is an interruptible sequence of actions that an object
can perform while it resides in a given state.

s R
Tracking
do/followTarget
N /

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

State

[1 A state 1s a condition or situation during the life of an object
during which it satisfies some condition, performs some
activity, or waits for some event. An object remains In a state
for a finite amount of time.

1 For example, a Heater in a home might be in any of four
states:

O Idle (waiting for a command to start heating the house),

O Activating (its gas Is on, but it's waiting to come up to
temperature),

O Active (its gas and blower are both on), and

O ShuttingDown (its gas is off but its blower is on, flushing
residual heat from the system).

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

State

1. Name A textual string that distinguishes the state from other states; a state may be
anonymous, meaning that it has no name

2. Entry/exit Actions executed on entering and exiting the state, respectively

actions

3. Internal Transitions that are handled without causing a change in state

transitions

4. Substates

The nested structure of a state, involving disjoint (sequentially active) or
concurrent (concurrently active) substates

5. Deferred
events

A list of events that are not handled in that state but, rather, are postponed and

queued for handling by the object in another state

o~ . shutDown .’\.
initial state inal state

name
Hari Prasad Pokhrel (hpokhrel24@gmail.com)

keyPress

Idle Running

linished

name

state

Transitions

1 A transition Is a relationship between two states indicating
that an object in the first state will perform certain actions
and enter the second state when a specified event occurs and
specified conditions are satisfied.

1 On such a change of state, the transition is said to fire. Until
the transition fires, the object is said to be in the source
state; after it fires, it is said to be in the target state.

1 For example, a Heater might transition from the Idle to the
Activating state when an event such as tooCold (with the
parameter desiredTemp) occurs.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Transitions

time event
send signal
afler (2 seconds) / send c.isAlive

self-transition

.\ / event trigger triggerless transition

nolse
It Searching Engaging

event trigger with parameters

guard condition /@

targetal{p) lisThreat] /
T.addTargelp)

contact
Tracking Engaging
action

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Advanced States and Transitions

4 Tracking @ A name

entry action ¢ entry / setMode(onTrack)
exit action o exit / setMode(offTrack)
intemal fransition —renewTarget / fracker Acquire()
activity o do/followTarget
deferred event —tl selfTest / defer /

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Substates

Iransition to/ffrom composite slate

composite state
fﬁequentiai substate

7 Active V i
s i}/.
Validating

gh. [continue]

L e

cardinserted

.\

Idle

o ™

maintain C > Selecting Processing
e - o
[not conlinue] gr i
. Printin
Maintenance entry / readCard _ 0 s
_exit/ejectCart -~ J

transition from substate
Hari Prasad Pokhrel (hpokhrel24@gmail.com)

History States

initial state for first entry

\

Command
query

shallow history state

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

e

BackingU

P

-

N A
Collecting
p

J

~

Copying
. ,

~

(

_\Elea ningUp
A

.

Concurrent Sub states

concurrent substate

join

Idle
composite state
maintain)
o« i

¢ Maintenance

e Teslin
Testlng Self ®
devices dlagﬂDEiE .

~® Commanding [continue]

H[Wailing ﬁﬂummand

keyPress [not continue] J,,-

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

State Transition Diagrams

State transition diagrams are a useful tool for constructing the
Individual classes. Specifically, they aid in two important
ways In “fleshing out” the structure of the class:

1. method development -- State transition diagrams provide
the “blueprints” for developing the algorithms that
Implement methods in the class

2. attribute identification — Attributes contain the state
Information needed for regulating the behaviors of the
Instances of the class

When constructing state transition diagrams, take care to ensure
that the post-conditions stipulated in the contracts are enforced.

Hari Prasad Pokhrel
(hpokhrel24@gmail.com)

State Transition Diagrams

e These diagrams are used to model the entire life
cycle of an object.

« State of an object Is defined as the condition
where an object resides for a particular time and
the object again moves to other states when
some events occur.

 State chart diagrams are also used for forward
and reverse engineering.

Hari Prasad Pokhrel
(hpokhrel24@gmail.com)

State Transition Diagrams

Notation
’ Transitions are labeled with the triggering
tsr?ggzjgre;/irt:tzngz ri]r?tstate event and the output if any
}
T event|output
start I

States are represented with

an oval and label @

State transitions are represented
with a dlrectéﬁgﬁgg;@ggmgom)

final state

State Transition Diagrams

Additional Notation

eventloutput

State State
[boolean condition]

T

Guard condition — transition
occurs only if condition is true

Hari Prasad Pokhrel
(hpokhrel24@gmail.com)

State Transition Diagrams

Example — Nested States in Telephone Call
off hook|dial tone

[valid subscriber]

-

tone

{playing dial

|

The state labeled digit
active has substates

Hari Prasad Pokhrefjgit

active

~

-

S

talking

do: hang up

)

answered

A

"\completehinging
dialing »(connecting

/

(hpokhrel24@gmail.com)

Phnne-EaII/J name
camposite state
Active I" Timeout '] simple state
do/ play message
: dial digit(n)
mr;;[ﬁ A after (15 sec.) lincomplete] 3;_!;-:1
condition
/get dial tone . Hme event after (15 sec.)
activity - r DialTone dial digit{n) sl f _
Ldm’ play dial tone T transition
' y dial digit(n){invalid
P dial digit{n)[valid]
inetal r' Invalid : fconnect
insta
C L Ldﬂ.-" play messagEJ [Ennnectlng)
(Busy) busy | | connected
do/ play busy
I callee callee tone
gl ANSWers hangs up W
hangs up
/disconnect r Ringing]
callee answers "
cancel service _ e s, |90/ play ringing tone |
exit point

HariPrasadPokhret
(hpokhrel24@gmail.com)

State Transition Diagrams

Second Example — A Queue of Capacity Two

arrival arrival

arrival | balk

The queue has three states that indicate its number of
occupants. When the queue is full, new arrivals
cannot enter, and must Iea\h/eI the system.

Hari Prasad Pokhre
(hpokhrel24@gmail.com)

Statechart Diagram

 Captures Dynamic Behavior (Event-Oriented)

State Machine

final state —»
state

h\ off / transition nested state
uard
- / MR

Idle
ready(3) [signalOK]

keepAlive / check()

Working

initial state

internal transition
offHook / reclaimConnection()

! (

action

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Statechart Diagram

Rejecting

@

Canceliciuit

[notvalid)fDisplay error message

final state

initial state

IZursorto 55K

L

RetrgClear 350, PIM entries

AN

transition

fieldiCursar to FIM

-

Yalidating

\

Fress tah OR mowve cursarto PIN

Getting S5M
event guard activity
5) Press key[l{eyt ’[ab].l'DiSFIg'g.f key

T FPress shif-tab OR move cursorto
S5 fieldiCursorto S50

(Getting PIN e State

ialid]/Start transaction | J0/validate 88K and FIN subrmit
. action

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

e

Fress key[key = shift-tablDisplaydot

/. .-_-\\.i. / shut[]m-m avent par:a meter

Idle tn-nt:ﬂll:l{dasursdTamp}
event

nitial state
atTemp z’ﬂ s

E‘El’[ﬂ-ﬁ

initial state
tooHaot{desired Temp

event

ready / mrnDn{}

Cooling tooHol{desiredTemp) [Activating h
‘f,,f- \ [Active J
state -

lransition looCold{desired Temp) o b
Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Statechart Diagram

1 Composite States Illustrated
1 Fork and Join Possible

[reject, urmwilling to rebid]

[Cancelled]
compasite state [J
i \\H*Auctinn
Iy \x* — ™,
Biddin gy |
substate
[Getting Bid [reject,continuel Evaluatinﬁ;cepﬂ [Accepting]
A " hidomereq -\) .) F— Join
\
[
4| - - [Purchased)
thread
o Autharizing Credit b .)
J | [Checking | [authorized] [oK]
fork
5 ~
N -

[nat authorized]

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Fejected]

Statechart Diagram

HCA
4 Cuff Inflating) pulse not ;éuff Deflating (2mmHg/se§
detected
Finding} pulse fSystoIic
Pulse Jdetectedl Found
. - J
pulse > ulse not
detected o) S I%Ietected
. [<B) E
[Flndlng‘ Pulse] g 7 Diastolic
start Found
—>[Idle] \\ /
cuff ¢))
deflated Cuff Deflating

(max deflation rate) |«

Hari Prasad Pokhrel (hpokhrel24@gmail.com) /

Statechart Diagram

*

data entry entries finished h
validation

entry: display

entry: validate
[nickname not unigue] ™

exit check entries

[Unigue]

roam display

entry: get room list
entry: display room list

selection

®

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Dynamic: Activity Diagram

1 Activity Diagrams: Represent the Performance of Operations and
Transitions that are Triggered

1 Captures Dynamic Behavior (Activity-Oriented)

1 Purposes:
O Model Business Workflows
O Model Operations

O Merging of FSMs and Petri-Net Concepts?

O Sequence::Time vs. Collaboration::Message vs. Statechart::Event vs.
Activity::Actions

1 Main Concepts: State, Activity, Completion Transition, Fork, Join
[0 Swimlanes Allow Relevant Classes to be Used

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Action States

simple action

(Bid plan 0%

action state

expression

(index := lookup(e) + 7; ')/

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Activity: purpose
[1So the purposes can be described as:

O Draw the activity flow of a system.
O Describe the sequence from one activity to another.
O Describe the parallel, branched and concurrent flow of the system

1 before drawing an activity diagram we should identify the
following elements:
O Activities
O Association
O Conditions
O Constraints

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

State Diagram Carryovers

The following items are common to state diagrams and activity
diagrams:

e activities
e actions
e transitions

o initial/final states (Bid plan >

Vv

Do construction

entry/setLock()

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Breaking Up Flows

alternate paths:
e branch

* merge
parallel flows:
e fork

* joIn

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Branching

A branch has one incoming transition and two or more
outgoing transitions:

Charge credit
card

[today [] 7 days before show]

(Mail tickets

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

[today < 7 days before show]

(Hold in will-call >

A branch may have one incoming transition and two or more
outgoing ones.

On each outgoing transition, you place a Boolean expression,
which is evaluated only once on entering the branch.

Release work _
order guard expression

branch .
T 4‘ / [materials not ready]
guard expression Reschedule
e [materials ready]
“-H..,____‘_-___—.

(Assign tasks)

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Merging

A merge has two or more incoming transitions and one
outgoing transition:

(Mail tickets > Customer picks
up tickets

Customer
sees show

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Forking

A fork represents the splitting of a single flow of control into
two or more concurrent flows of control:

(Receive order >

Vv

Vv

(Log order > (Process order >

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Joining

A join represents the synchronization of two or more flows of
control into one sequential flow of control:

(Receive product> (Bill customer >

(Pay bill D

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Joins and forks should balance, meaning that the number of flows that leave a fork
should match the number of flows that enter its corresponding join.

Also, activities that are in parallel flows of control may communicate with one
another by sending signals. This style of communicating sequential processes is
called a coroutine. Most of the time, you model this style of communication using
active objects.

@repare for speec_r:ujj

/ \1/ = 4

(Decompress) /

(Gesture()) L \J/ \L i
N

(Synch mouth()} (Stream audiu{j:D

join

L
\Lff/

’.._._,.r'-'-'.-

W
Hari Prasad Pokhrel (hpokhrel24@gmail.con1)

(Cleanup)

Swimlanes

You'll find it useful, especially when you are modeling workflows of business processes,
to partition the activity states on an activity diagram into groups, each group
representing the business organization responsible for those activities.

Swimlanes partition groups of activities based on, for instance,
business organizations:

Customer Billing

(Receive product> (Bill customer >

Vv V

(Pay bill >

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

A swimlane is a kind of package;

A swimlane really has no deep semantics, except that it may represent
some real-world entity. Each swimlane represents a high-level
responsibility for part of the overall activity of an activity diagram,
and each swimlane may eventually be implemented by one or more

classes

Hari Prasad Pokhrt

Warsehouse -
\
LY

",
o

Full materials j

Cusl-::r?rner -\\R‘; Salaes -“\._‘ ;
N i T
iF_!&que-s_l:_prcrducD e e e _1—_ =
i
Jr?
B i FProcess order :I
-—..L\h",r-
)
'{_ Ship order
N
_ W
C__ Recaeive order) .i._ Eill {:u?mrher
o Ny
b4
-"._:_ Paw bBilk _:l
; hﬁ Closea aordear :I
| (hpokhrel24@gmail.com) (v)
L)

=
A

b:L- smwerirmilane

Modeling a Workflow

Customer

(Request return jl
T

[i Ship item

A

L

i @ Iterm
[returned]

LD al.l 1

Telesalas

!Get return nu mh@

Accounting

(credit acnﬁ
o

Warehouse

[available]

[1n D
all Fiasau mMUAIIci

£l 1 LD A =0 - | N\
\HPYURITITCIZ5WYITIall. CUITT)

Modeling an Operation

[slope = |.slope]
{jreturn Puint{ﬂ.ﬂD-%@

G{ = (l.delta - delta) / (slope - |.slope);)

V

(y = (slope * x) + delta;)

v
Qeturn Pnint{x,yD

.

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

else

Activity Diagram

Activity Diagram

[otherwise] Enrolling in the
Uniwversity for the first
[incorrect] [help available] i fme
Fill Dut Enrollment o Obtain Help to Fill AD #: 007
Forms [trivial Cut Farms
problems] L
[correct]
| (ﬂ«ﬁend Universit‘y
Enrall in University e] e
J L Fresentation

Enrall In Seminaris Make Initial Tuition
Fayment

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Activity Diagram

o Captures Dynamic Behavior (Activity-Oriented)

initial state
‘H-‘""‘-'-—.___f. .

Select site)

Commission architect)

Develop plan)

Bid plan
sequential branch [not accepted]
ﬂ [else] concurrent fork
—

activity state
with submachine

action state

Do site work) (Do trade work()

concurrent join

.// object flow
: CertificateOfOccupanc
inish construction - - - - - - —>| EAney

[completed]

Hari Prasad Pokhrel (hpokhrel24
final state
‘-t-‘_‘_‘__‘_‘_-_._‘

Activitv Dianram

Hari Pras

swimlane

Custarner ATM Machine ‘Bank
<—— start
Insert card
Vg activity
Enter pin % Authorize rguard expression
branch -, +
(" Enter amount alig Piny_Y lrvvalid PA
-
{_ Check account balance)
[balance == amoaunt] [halance = amount]
k
“_,f for
— {" Debit account)
Q Take money from slot _} join

v

Sh

owy Balance

merge Ty

nail.com)

Eject card

Activity Diagram

HCA

Irregular beat

Waiting for
Heart Signal

v

Heartbe@

\4

{ Heart Signal }

Hari Prasad Pokhrel (hpokhrel24@gmail

Trigge
Local
Alarm

r

N

|

timeout

[Waiting for

I

Trigger
Remote
Alarm

!

o)

com)

Alarm Reset }

| Resp. Signal

\ 4

Breath>

\ 4

{ Resp Signal }

collaborations

Classes, interfaces,

re an

Design View

AN

he UML

Implementation View

Components

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

State machine

5./f/l Use Case View :7-
| =
: Process View Deployment View -/-
Active classes Nodes
Organization Dynamics
Package, subsystem Interaction

From UML to the Unified Process

e UML as a Model Can’tWork in Isolation

e Large Scale System Design/Development Involves

e Team-Oriented Efforts
e Software Architectural Design
e System Design, Implementation, Integration

e The Unified Process by Rational Is
e |terative and Incremental
o Use Case Driven
e Architecture-Centric

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Creat,‘in%the Unified Process

)

2 N
2 <
S TTIAY

Functional testing

Performance testing
Requirements mgmt

T Conf. and change mgmt

Business engineering
Data engineering
Ul design

/

The Rational Approach

T

UML

The Ericsson Approach

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

What Is a Process?

e Defines\\/ho Is doing \What, \When to do it, and How to reach a
certain goal.

New or changed New or changed

>

requirements system

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Lifecycle Phases

time

1 Inception Define the scope of the
project /develop business case

1 Elaboration Plan project, specify features, and
baseline the architecture

(1 Construction Build the product
O Transition Transition the product to its users

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Unified Process Structure
Iterations and Workflow

InceptiorlEIaboratioI Constructionl Transitionl

Business Modeling

Requirements /\

—

Analysis & Design j : . i :
Implementation e M
Deployment 4 /2'\

Configuration Mgmt __A

Management
Environment A_

PrellmlndrgeﬂltedlterJIterllterl Iterl -
lteration(#)l #2: #p#n+n+2#nm#Em+1

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Workflows and

]
Requirements _____. | Use case
Model
1
Analysis rm““...".."rr_-Aﬁggl;is
o |
Design Design Deploym.
Model Model

Implementation

Impl.
Model

Test

Test

Hari Prasad Pokhrel (hp

Model

Use Case
Model

1

Analysis
Model

1

Design
Model

1

Depl.
Model

[]

Impl.
Model

[1]

Test
Model

Hari Prasad Pokhrel

__lJse Case Mode -

Sequence
Diagrams

Collaboration
Diagrams

. Statechart
Diagrams

(hpokhrel24@gmail.com) Activity

Diagrams

Analvsis & Design I\/Ioc-

Use Case
= - -
Analysis |
Model
—l ‘.". ...". - "'~._
Design
Model
- || ... Sequence
epl. iagram
Model Diagrams
| Collaboration
Impl. - Diagrams
Model
— . Statechart
Diagrams
Test
Model
Hari Prasad Pokhrel (hpokhrel24@gmail.com) Activity

Diagrams

Deployment and Implementation

vode .

Use Case

= - -
1
Analysis
Model

1
Design
Model
[1
o Sequence
epl. '
Depl. Diagrams
1 Collaboration
Impl. Diagrams
Model
— St_atechart
Diagrams
Test
Model
Hari Prasad Pokhrel (hpokhrel24@gmail.com) Activity

Diagrams

Test Model

Use Case
Model

1

Analysis
Model

1
Design
Model

1

Sequence

Depl. Diagrams

Model

[1]

Impl.
Model

Collaboration
Diagrams

Statechart
Diagrams

1]

Test
Model

Hari Prasad Pokhrel (hpokhrel24@gmail.com) Activity
Diagrams

Use Case Driven

Use Cases (scenarios) bind these workflows together

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Use Cases Drive lterations

» Drive a Number of Development Activities
e Creation and Validation of the System’s Architecture
e Definition of Test Cases and Procedures
e Planning of Iterations
e Creation of User Documentation
e Deployment of System

 Synchronize the Content of Different Models

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Architecture-Centric

» Models Are \ehicles for Visualizing, Specifying, Constructing,
and Documenting Architecture

e The Unified Process Prescribes the Successive Refinement of an
Executable Architecture

time

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Architecture and Models

Use Case Analysis Design Impl. Test
Model Model Model Dﬁglgém' Model Model

Models

|l |

Architecture embodies a collection of views of the models

Views

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Logical Application Architecture

.. === Graphical o Graphical - Graphical
User User User
Interface Interface Interface

1’”‘—[, A“\ Business
- ‘!:-'i-! oce!
/| |

T Relational
® Database

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Physical Application Arc_hitecture

> Thinner client,

ol Y()/

Relational Database Server(s)

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Complex Internet System

Clien Dynamic HTML, JavaScript, Java
(\plug—ins, source code enhancements

Serve.ﬁva, C, C++, JavaScript, CGI

Application Java, C, C++,
Server JavaBeans, CORBA,

DCOM

Fulfillment Financial Inventory RDBMS Native

System System System Server languages
Hari Prasad Pokhrel (hpokhrel24@gmail.com)

Function versus Form

e

o Use Case Specify Function; Architecture Specifies Form
e Use Cases and Architecture Must Be Balanced

Hari Prasad Pokhrel (hpokhrel24@gmail.com)

The Unified Process Is En

Activity

Worker ..., - ;
..... S/ S¥R303

Describe a
Analyst Use Case
responsible for Artifact
Use case I

Hari Prasad Pokhrel (hpokh %%e@f:agjge'l)
arl Frasa oKnre poknre %I .com

