
Modelling with Classes

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



What constitutes a good model?

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

A model should
 use a standard notation 
 be understandable by clients and users 
 lead software engineers to have insights about the system
 provide abstraction

Models are used:
 to help create designs
 to permit analysis and review of those designs. 
 as the core documentation describing the system. 



Static: Class Diagram (Rumbaugh/Booch)

 Utilized for Static Structure of Conceptual Model
 Class Diagram Describes

 Types of Objects in Application
 Static Relationships Among Objects
 Temporal Information Not Supported

 Class Diagrams Contain 
 Classes: Objects, Attributes, and Operations
 Packages: Groupings of Classes
 Subsystems: Grouping of Classes/Packages

 Main Concepts: Class, Association, Generalization, Dependency, 
Realization, Interface

 Granularity Level of Use-Cases is Variable

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Essentials of UML Class Diagrams

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

The main symbols shown on class diagrams are:
Classes

 represent the types of data themselves

 Associations
 represent linkages between instances of classes

 Attributes
 are simple data found in classes and their instances

Operations
 represent the functions performed by the classes and their instances

Generalizations
 group classes into inheritance hierarchies



Classes
A class is simply represented as a box with the name of the class inside

 The diagram may also show the attributes and operations
 The complete signature of an operation is: 

operationName(parameterName: parameterType …): returnType

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



The Class Diagram Notation
 Identify classes, attributes of each class, and operations of 

each class
 Classes, their attributes and methods are specified based 

on the objects needed to realized use case and interfaces 
to external entities

Detailed
Attributes,
Data types,
And operations 
Are defined/
refined
During designHari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Associations and Multiplicity
An association is used to show how two classes are related to each other

 Symbols indicating multiplicity are shown at each end of the association

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Object Diagrams

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Object (Instant) Diagrams give a representation of a class diagram using actual objects in the system. For 
example if this is our class diagram:

 Which of the following object diagrams are valid?

Homer

Lisa

Bart

Walmart

Sears

Homer

Lisa

Bart

Walmart

Sears

Homer

Lisa

Bart

Walmart

Sears

Homer

Lisa

Bart

Walmart

Sears



Labelling associations
 Each association can be labelled, to make explicit the nature of the 

association

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 A Student can take many Courses and many Students 
can be enrolled in  one Course. 

Student Course
takes* *

Alice: Student 254: Course

253: CourseJill: Student



Analyzing and validating associations

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Many-to-one
 A company has many employees, 
 An employee can only work for one company.
 This company will not store data about the moonlighting activities of 

employees! 
 A company can have zero employees
 E.g. a ‘shell’ company

 It is not possible to be an employee unless you work for a company

* worksForEmployee Company1



Analyzing and validating associations

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Many-to-many
 A secretary can work for many managers
 A manager can have many secretaries
 Secretaries can work in pools
 Managers can have a group of secretaries
 Some managers might have zero secretaries. 
 Is it possible for a secretary to have, perhaps temporarily, zero managers?

*
supervisor

*****1..*Secretary Manager



Analyzing and validating associations

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 One-to-one
 For each company, there is exactly one board of directors
 A board is the board of only one company
 A company must always have a board
 A board must always be of some company

Company BoardOfDirectors11



Multiplicity

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Multiplicity can be expressed as,
 Exactly one   - 1
 Zero or one  - 0..1
 Many  - 0..* or *
 One or more  - 1..*
 Exact Number - e.g.  3..4 or 6
 Or a complex relationship – e.g.  0..1, 3..4, 6..* would mean 

any number of objects other than 2 or 5



Analyzing and validating associations
Avoid unnecessary one-to-one associations
 Avoid this                                do this

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Question

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Label the multiplicities for the following examples:
VideoCustomer rented __

currentlyRenting__ __

__

ChildWoman
givesBirthToo__ __

SisterBrother
has__ __

Hockey TeamLeague 
Player

currentlyOnIceFor__ __
____ AssignedTo



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Question
In words, what do these diagrams mean?

A Country has _________________________
A City ____________________

A Colour ________________________
A Person _________________________

CityCountry
hasCapital0..1 1

ColourPerson
favourite* 0..1

one and only one city as its capital



Another Question:

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Correctly label this diagrams multiplicity:

Radio StationCar listeningTo? ?
couldTuneInto? ?



A more complex example
 A booking is always for exactly one passenger
 no booking with zero passengers
 a booking could never involve more than one passenger.

 A Passenger can have any number of Bookings
 a passenger could have no bookings at all
 a passenger could have more than one booking

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Question

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Create two or three classes linked by associations to 
represent the following situations:
• A landlord renting apartments to tenant
• An author writing books distributed by publishers
Label the multiplicities (justify why you picked them)
Give each class you choose at least 1 attribute



Your Answer

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Reflexive associations/ self association.
 It is possible for an association to connect a class to itself
 An association that connects a class to itself is called a self 

association.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

*
*

*
*Course

prerequisite

successor
isMutuallyExclusiveWith

At TU, you can’t take 
Calc 1301b and 
Calc1501b

At TU, you must have 
CS2210 and CS2211 to 
take CS2212



Association - Self

 A Company has Employees.
 A single manager is responsible  for up to 10 workers. 

Employee
manager

workerResponsible
for

1

0..10



Association - Multiplicity

 A cricket team has 11 players. One of them is the 
captain.

 A player can play only for one Team.   
 The captain leads the team members.

Player Team

member of11 1

Captain

0..11

Captain

Team 
Mem
ber

Leads

1

10



Association classes
 Sometimes, an attribute that concerns two associated classes cannot be 

placed in either of the classes
 The following are equivalent

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Question

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Add association classes to the following many to many 
associations and come up with at least one attribute for the new 
association class:

HotelRoomGuest stay in* *

ShowSpectator
attended* *

SportsGamePlayer
participated in* *



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Class Relationships
 Association
Aggregation
Composition
 Generalization
 Realization
 Dependency

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Generalization (Inheritance)
 Child class is a special case of the parent class

SuperClass

SubClass1 SubClass2

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Generalization/Specialization Relation

Specializing a superclass into two or more subclasses
 The discriminator is a label that describes the criteria used in the 

specialization

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Generalization/Specialization Relation

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Generalization is shown as a solid-line
arrow from the child (the more specific
element) to the parent (the more general
element) this type of relationship is also
called inheritance.

 Should be used to define class hierarchies based
on abstraction



Generalization/Specialization Relation

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Avoiding unnecessary generalizations

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Inappropriate hierarchy of classes, which should be instances
Ask yourself: Does this class require any operations that will be 
done differently than the other classes? If answer is no, don’t make 
it a class!



Avoiding unnecessary generalizations 
(cont)

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Improved class diagram, with its corresponding instance 
diagram



Handling multiple discriminators
 Creating higher-level generalization
 Say we had a Prey class, we would need TWO associations instead of 

just one.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Prey



Handling multiple discriminators

 Using multiple inheritance

 Using the Player-Role pattern

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Avoiding having instances change class
 An instance should never need to change class
 This is a poor model:

 A bit better solution, but then we lose the polymorphism advantage for 
any operations that differ between FullTimeStudent and 
PartTimeStudent: 

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Student
attendanceStatus



Multiple inheritance

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Generalization (Inheritance) e.g.

Circle

GraphicCircle

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Inheritance - Implementation 

public class Circle {

} 

public class GraphicCircle extends Circle {

}

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Abstract Class

Shape

Circle Rectangle

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Abstract Methods (Operations)

Shape

Circle Rectangle

draw()

draw() draw()

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Abstract class and method 
Implementation

public abstract class Shape {
public abstract draw(); //declare 

without implementation
………

}

public class Circle {
public draw(){
…….
}
…..

}
Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Class Relationships
 Association
 Generalization
 Realization
 Dependency

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Realization- Interface
 Interface is a set of operation the class carries out

<<interface>>
TypeWriter

ctl()
pageDown()

brandName 
numOfKeys

Keyboard

keyStroke()
ctl()
pageDown()

brandName 
numOfKeys

Keyboard

TypeWriter

OR

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Realization - Implementation

public interface TypeWriter {
void keyStroke()

}

public class KeyBoard implements TypeWriter {
public void  keyStroke(){ 
………

}
}

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Class Relationships
 Association
 Generalization
 Realization
 Dependency

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Dependency : A Special Case of 
Association

 Change in specification of one class can change the other class. 
This can happen when one class is using another class.

Circle

Point
Move(p:Point)

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

import java.awt.Graphics;
class HelloWorld extends java.applet.Applet {
public void paint (Graphics g) {
g.drawString("Hello, World!", 10, 10);
}
}



Dependency cont
 Dependency relationship can be used to show relationships 

between classes and objects.

Circle

circleA:Circle

circleB:Circle

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Dependency
Dependency

RequestHandler ResponseHandlerTimerEvent

CommandManager

CommandManager (Client class) depends on services 
provided by the other three server classes

Client

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

This figure shows a dependency from CourseSchedule to 
Course, because Course is used in both the add and
remove operations of CourseSchedule.



Class Diagram - Example
Draw a class diagram for a information modeling system 

for a school.
 School has one or more Departments. 
Department offers one or more Subjects. 
A particular subject will be offered by only one department.
Department has instructors and instructors can work for one 

or more departments.
 Student can enrol in upto 5 subjects in a School.
 Instructors can teach upto 3 subjects.
The same subject can be taught by different instructors.  
 Students can be enrolled in more than one school.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Class Diagram - Example

 School has one or more Departments. 

School Department
has1 1..*

 Department offers one or more Subjects.
 A particular subject will be offered by only one 
department.

Department Subject
offers1 1..*

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Class Diagram - Example

 Department has Instructors and instructors can work for 
one or more departments.

assigned to1..*
Instructor Department

1..*

 Student can enrol in upto 5 Subjects.

Student Subject
takes* 0..5

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Class Diagram - Example

 Instructors can teach up to 3 subjects.
 The same subject can be taught by different instructors. 

Instructor Subjects
teaches

1..*

1..3

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Class Diagram - Example

 Students can be enrolled in more than one school.

Student School
member

*

1..*

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Class Diagram Example

School Department

Student Subject Instructor

1…*

*

member

* 1..5

attends

1..3 1..*

teaches

1..*

1

1 1..*

has

1..*

1..*

assignedTo

offeres

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Object Diagram
Object Diagram shows the relationship 

between objects.

Unlike classes objects have a state.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Object Diagrams
 A link is an instance of an association
 In the same way that we say an object is an instance of a class

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Object Diagram
Track Instance Behavior
 Class

Diagram

 Instance
Diagram

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Object Diagram
 Captures Instances and Links

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Question:

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Draw a class diagram corresponding to the following 
situation:
• A media player (Most software media players support an array of media formats, 
like Quicktime for Macs or Windows Media Player for Windows)that can handle 
sound, images and sequences of images. Each type of medium requires a “plug-in” 
(plug-in is a set of software components that adds specific capabilities to a larger 
software application), although some plug-ins can handle more than one type of 
medium.
• An organization has three categories of employee: professional staff, technical 
staff and support staff. The organization also has departments and divisions. Each 
employee belongs to either a department or a division. Assume that people will 
never need to change from one category to another.



Your Answer:

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Question:

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Draw a class diagram that could generate the object diagram 
shown below:

United Nations:

France:

Mexico:

NATO:

Ontario:

Quebec:

United States:

New York State:

Canada:

isMemberOf
isMemberOf

isMemberOf

isMemberOf

isMemberOf

isMemberOf

borders

isPartOf

isPartOf

isPartOf

borders

borders

borders

borders



Your answer:

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Territory

PoliticalEntity

name

InterGovernmentalOrganization

Country StateOrProvince

*    isMemberOf       *

borders

*
*

*1 isPartOf



Associations versus generalizations in 
object diagrams

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Associations describe the relationships that will exist between 
instances at run time. 
 When you show an instance diagram generated from a class diagram, 

there will be an instance of both classes joined by an association

Generalizations describe relationships between classes in class 
diagrams. 
 They do not appear in instance diagrams at all. 
 An instance of any class should also be considered to be an instance of 

each of that class’s superclasses



More Advanced Features: Aggregation

 Aggregations are special associations that represent ‘part-whole’ 
relationships. 
 The ‘whole’ side is often called the assembly or the aggregate
 This symbol is a shorthand notation association named isPartOf

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



When to use an aggregation 

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

As a general rule, you can mark an association as an aggregation if the 
following are true:

 You can state that
 the parts ‘are part of’ the aggregate
 or the aggregate ‘is composed of’ the parts

 When something owns or controls the aggregate, then they also own 
or control the parts

Club Member1 *

NOTE: Might be able to say a person is part of a club BUT 
the owner of the club does NOT own the members



Composition: A Special case of 
Aggregation

 A composition is a strong kind of aggregation 
 Composition is shown as a solid filled diamond, with the diamond attached to the class that 

is the composite. Composition is a form of aggregation that requires coincident lifetime of 
the part with the whole and singular ownership; i.e. the part is owned by only one whole 
and is deleted when the whole is deleted

 if the aggregate is destroyed, then the parts are destroyed as well

 Two alternatives for addresses

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Composition example

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Aggregation vs Composition

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Propagation

 A mechanism where an operation in an aggregate is implemented by having 
the aggregate perform that operation on its parts

 At the same time, properties of the parts are often propagated back to the 
aggregate

 Propagation is to aggregation as inheritance is to generalization. 
 The major difference is:
 inheritance is an implicit mechanism
 propagation has to be programmed when required

 Eg. Deleting a polygon means deleting the line segments

 Marking a part-whole association as an aggregation using the diamond symbol 
is optional. Leaving it as an ordinary association is not an error, whereas 
marking a non-aggregation with a diamond is an error, therefore, when in 
doubt, leave it out! 

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Question

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 For each of the following associations, indicate whether it 
should be 
an ordinary association
a standard aggregation
a composition

a) A telephone and its handset
b) A school and its teachers
c) A book and its chapters



Interfaces

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

An interface describes a portion of the visible behaviour of a set of objects.
 An interface is similar to a class, except it lacks instance variables and 

implemented methods
 Although Employee and ATM share common operations they have different 

superclasses. This means they cannot be put in the same inheritance hierarchy; 
therefore the interface called Cashier is used

 A key advantage of using interfaces is that they can reduce what is called coupling
between classes.

 Inheritance indicates an isa relationship, interfaces indicate a can-be-seen-as
relationship

«interface»
Cashier

withdraw
deposit

Machine

ATMEmployee

Person Machine

ATMEmployee

Person

Cashier Cashier



Interfaces and Stereotypes
 Interface – Operation Signatures (Abstract Class)
 Stereotype – Extend UML with New Modeling Items Created from 

Existing Kinds (Classes)

BalloonsBalloons
for Interfacesfor Interfaces

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



The Process of Developing  Class 
Diagrams

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

You can create UML models at different stages and with
different purposes and levels of details
 Exploratory domain model:
 Developed in domain analysis to learn about the domain

 System domain model:
 Models aspects of the domain represented by the system

 System model:
 Includes also classes used to build the user interface and system

architecture



System domain model vs System
model

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 The system domain model omits many classes that are needed to build a
complete system
 Can contain less than half the classes of the system.
 Should be developed to be used  independently of particular sets of

 user interface classes 
 architectural classes

 The complete system model includes
 The system domain model
 User interface classes
 Architectural classes such as the database, files, servers, clients
 Utility classes



Suggested sequence of activities

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Identify a first set of candidate classes
 Add associations and attributes
 Find generalizations
 List the main responsibilities of each class
 Decide on specific operations
 Iterate over the entire process until the model is satisfactory
 Add or delete classes, associations, attributes, generalizations, 

responsibilities or operations
 Identify interfaces
 Apply design patterns

 Don’t be too disorganized. Don’t be too rigid either.



Identifying classes

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 When developing a domain model you tend to discover classes
 When you work on the user interface or the system

architecture, you tend to invent classes
 Needed to solve a particular design problem
 (Inventing may also occur when creating a domain model)

 Reuse should always be a concern
 Frameworks
 System extensions
 Similar systems



A simple technique for discovering
domain classes

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Look at a source material such as a description of requirements
 Extract the nouns and noun phrases
 Eliminate nouns that:
 are redundant
 represent instances
 are vague or highly general
 not needed in the application. For example in a domain model, you

would eliminate classes that represent command or menus in the UI. As
a rule of thumb, a class is only needed in a domain model if you have to
store or manipulate instances of it in order to implement a requirement

 Pay attention to classes in a domain model that represent types of users or
other actors



Identifying associations and attributes

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Start with classes you think are most central and important
 Decide on the clear and obvious data it must contain and its

relationships to other classes.
 Work outwards towards the classes that are less important.
 Avoid adding many associations and attributes to a class
 A system is simpler if it manipulates less information



Tips about identifying and specifying
valid associations

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

An association should exist if a class
 possesses
 controls
 is connected to
 is related to
 is a part of
 has as parts
 is a member of, or
 has as members
some other class in your model

 Specify the multiplicity at both ends
Label it clearly.



Actions versus associations
 A common mistake is to represent actions as if they were associations

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Bad, due to the use of 
associations that are actions

Better: The borrow operation creates a 
Loan object and the return operation set 
the returnedDate attribute



Identifying attributes

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Look for information that must be maintained about each class
 Several nouns rejected as classes, may now become attributes
 An attribute should generally contain a simple value
 E.g. string, number



Tips about identifying and specifying
valid attributes

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 It is not good to have many duplicate attributes
 If a subset of a class’s attributes form a coherent group, then

create a distinct class containing these attributes

1**** *Person

name
addresses

addresses

Person

name
street1 
municipality1 
provOrState1 
country1 
postalCode1
street2 
municipality2 
provOrState2 
country2 
postalCode2

Person

name

Address

street 
municipality 
provOrState 
country 
postalcode 
typeBad due to a plural 

attribute

Bad due to too many 
attributes, and inability 
to add more addresses

Good solution. The 
type indicates whether 
it is a home address, 
business address etc.



An example (attributes and
associations)

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Identifying generalizations and
interfaces

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

There are two ways to identify generalizations:
 bottom-up
 Group together similar classes creating a new superclass

 top-down
 Look for more general classes first, specialize them if needed

Create an interface, instead of a superclass if
 The classes are very dissimilar except for having a few operations in

common
 One or more of the classes already have their own superclasses
 Different implementations of the same class might be available



An example (generalization)

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Case Study
 Implement the game of Boogle

 http://www.hasbro.com/scrabble/en_US/boggleGame.cfm

 Some Specs:

• There is an admin mode, tournament mode, fun play mode
 To get into admin mode type: java UWOBoggle -admin
 To get into tournament mode or fun play mode type: java UWOBoggle
 Then select Tournament or Fun Play

• In Admin Mode Must Be able to 
 Manage players:

• Add, delete and modify players. Players have a first name, last name, userid and password.
• Sort players by first and last name
• Reset password

 Manage puzzles (puzzles are made up of 16 letters and puzzleid)
• Add, delete, bulkload, solve (using a stored dictionary of valid words) and list by puzzleid

 Manage tournaments (2-8 players per tournament, tournament has a unique tournament id and a name. A tournaments run in 1-
3 battles of 2 per round, winning player moves to the next round)

• Add tournaments
• Add players to a tournament, add puzzles (all players play the same puzzle on each round but in pairs, higher scorer for 

each pair moves to the next round, in odd numbers, the highest scorer get a buy to the next round) to a tournament 
(must keep track of the score for each player for each round and the winner of each pairing)

• Delete tournaments
• List tournaments by tournament id or by tournament name
• Print tournaments

Winner
Player A

Player C

Player B

Player B Player B



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

More Specs
•In Tournament or Fun Play Mode a user must be able to:

•Log on (gets 3 attempts and then kicked out)
•Play puzzles as follows

•Start the puzzle
•Given 3 minutes to find words
•Given a score at the end
•If the puzzle is not a tournament puzzle, the player can see the solution for the puzzle.

•In just Tournament Mode
•Player sees a list of tournaments that he/she is participating in
•Picks an ongoing tournament
•Plays the puzzles
•Sees if he/she moves to the next round

•In just Fun Mode
•Pick a puzzle from the list of puzzles
•Play the puzzle
•View the top 3 scores for that puzzle
•See the top 3 players (who have the highest scores for any games)

Working in pairs, determine the nouns and noun phrases that 
might, in the end, become potential classes. Add the attributes and 
associations. While making your list, choose good names for each 
of the potential classes
REMEMBER you only need classes in the domain model for  
things that need to have data stored about them!



Your Answer

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Laura’s Use Case 
Diagram for the 
Project 



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Laura’s Class 
Diagram for the 
Project 



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

One group’s class diagram for the project. This one has 
problems…Can you see them?



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Question

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Identify any generalizations or interfaces. This may lead you to 
add or delete classes, associations and attributes. Modify your 
class diagrams accordingly.



Allocating responsibilities to
classes

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

A responsibility is something that the system is required to do.
 Each functional requirement must be attributed to one of the classes
 All the responsibilities of a given class should be clearly related.
 If a class has too many responsibilities, consider splitting it into distinct classes
 If a class has no responsibilities attached to it, then it is probably useless
 When a responsibility cannot be attributed to any of the existing classes, then

a new class should be created

 To determine responsibilities
 Perform use case analysis
 Look for verbs and nouns describing actions in the system description



Categories of responsibilities

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Setting and getting the values of attributes
Creating and initializing new instances
Loading to and saving from persistent storage
Destroying instances
Adding and deleting links of associations
Copying, converting, transforming, transmitting or outputting
Computing numerical results
Navigating and searching
Other specialized work



An example (responsibilities)

• Creating a new regular flight

• Searching for a flight

• Modifying attributes of a 
flight

• Creating a specific flight

• Booking a passenger

• Canceling a booking

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Prototyping a class diagram on paper

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 As you identify classes, you write their names on small cards
 As you identify attributes and responsibilities, you list them on 

the cards 
 If you cannot fit all the responsibilities on one card:
 this suggests you should split the class into two related classes.

 Move the cards around on a whiteboard to arrange them into a
class diagram.

 Draw lines among the cards to represent associations and
generalizations.



Identifying operations

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Operations are needed to realize the responsibilities of each
class
 There may be several operations per responsibility
 The main operations that implement a responsibility are

normally declared public
 Other methods that collaborate to perform the responsibility

must be as private as possible



An example (class collaboration)

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Class collaboration ‘a’

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Making a bi-directional link between two existing objects;
 e.g. adding a link between an instance of SpecificFlight

and an instance of Airplane.


 1. (public)The instance of SpecificFlight
 makes a one-directional link to the instance of Airplane
 then calls operation 2.

 2. (non-public)The instance of Airplane
 makes a one-directional link back to the instance of

SpecificFlight

AirplaneSpecificFlight * 0..1



Class collaboration ‘b’

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Creating an object and linking it to an existing object
 e.g. creating a FlightLog, and linking it to a

SpecificFlight.


 1. (public) The instance of SpecificFlight
 calls the constructor of FlightLog (operation 2)
 then makes a one-directional link to the new instance of
FlightLog.

 2. (non-public) Class FlightLog’s constructor
 makes a one-directional link back to the instance of
SpecificFlight.

SpecificFlight

+ createFlightLog [b1]

FlightLog

FlightLog [b2]

0..10..10..10..10..10..11



Class collaboration ‘c’

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Creating an association class, given two existing objects
 e.g. creating an instance of Booking, which will link a

SpecificFlight to a PassengerRole.
 1. (public) The instance of PassengerRole

 calls the constructor of Booking (operation 2).
 2. (non-public) Class Booking’s constructor, among its other actions

 makes a one-directional link back to the instance of PassengerRole
 makes a one-directional link to the instance of SpecificFlight
 calls operations 3 and 4.

 3. (non-public) The instance of SpecificFlight
 makes a one-directional link to the instance of Booking.

 4. (non-public) The instance of PassengerRole
 makes a one-directional link to the instance of Booking.

SpecificFlight
+ makeBooking [c1]

Booking

Booking [c2]

PassengerRole

addLinkToBooking [c4]
* ****** addLinkToBooking [c3]11



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Class collaboration ‘d’
 Changing the destination of a link
 e.g. changing the Airplane of to a SpecificFlight, from

airplane1 to airplane2
 1. (public) The instance of SpecificFlight

 deletes the link to airplane1
 makes a one-directional link to airplane2
 calls operation 2
 then calls operation 3.

 2. (non-public) airplane1
 deletes its one-directional link to the instance of SpecificFlight.

 3. (non-public) airplane2
 makes a one-directional link to the instance of SpecificFlight.

Airplane

addLinkToSpecificFlight [a2, d3]
deleteLinkToSpecificFlight [d2]

SpecificFlight

+ changeAirplane [d1]

* 0..1



Class collaboration ‘e’

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Searching for an associated instance
 e.g. searching for a crew member associated with a

SpecificFlight that has a certain name.


 1. (public) The instance of SpecificFlight
 creates an Iterator over all the crewMember links of the

SpecificFlight\
 for each of them call operation 2, until it finds a match.

 2. (may be public) The instance of EmployeeRole
returns its name.

SpecificFlight

+ findCrewMember [e1]

EmployeeRole

+ getName [e2]
* *
crewMember



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Packages in Class Diagrams
 Complex Class Diagrams are Abstracted 
 Packages Contain Multiple Classes and are Associated and 

Linked to One Another
Dependency Arrow is Dashed
 Indicates that One Package Depends on Another
Means that Changes in Destination (Dependee - Arrow Head) 

Can Possible Force Changes in the Source (Dependent – Arrow 
Tail)\

 Supports Rudimentary SW Architecture Concepts
 However, no Checking/Enforcement of Dependencies in 

Subsequent Diagrams

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Package
 A package is a general purpose mechanism for organizing 

elements into groups. 
 Packages help you organize the elements in your models so that 

you can more easily understand them. 
 Packages also let you control access to their contents so that you 

can control the seams in your system's architecture.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Simple and Extended Package

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Package
 A package may own other elements, including classes, interfaces, 

components, nodes, collaborations, use cases, diagrams, and even 
other packages.

 A package forms a namespace, which means that elements of the 
same kind must be named uniquely within the context of its enclosing 
package. 
 For example, you can't have two classes named Queue owned by the 

same package, but you can have a class named Queue in package P1 and 
another (and different) class named Queue in package P2. 

 The classes P1::Queue and P2::Queue are, in fact, different classes and 
can be distinguished by their path names. 

 Different kinds of elements may have the same name.
 Packages may own other packages

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Packages may own other packages

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Importing and Exporting
The public parts of a package 
are called its exports.
The package
GUI exports two classes, 
Window and Form. 
EventHandler is not exported by 
GUI;
EventHandler is a protected part 
of the package.

In this example, Policies explicitly imports the package GUI. GUI::Window and 
GUI::Form are therefore made visible to the contents of the package Policies. 
However, GUI::EventHandler is not visible because it is protected. 
Because the package Server doesn't import GUI, the contents of Server don't have 
permission to access any of the contents of GUI. 
Similarly, the contents of GUI don't have permission to access any of the contents of 
Server.



Generalization Among Packages

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Modeling Groups of Elements

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Modeling Architectural Views

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Example Package

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Static: Component Diagram
 Component Diagram: High-Level Interaction and 

Dependencies Among Software Components
 Captures the Physical Structure of the Implementation
 Built As Part of Architectural Specification
 Purposes:

Organize Source Code
Construct an Executable Release
 Specify a Physical Database

Main Concepts:Component, Interface, Dependency, 
Realization

 Developed by Architects and Programmers

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Component
 A component is a physical and replaceable part of a system that 

conforms to and provides the realization of a set of interfaces. 
 Graphically, a component is rendered as a rectangle with 

tabs.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Components and Classes
 In many ways, components are like classes: Both have names; both 

may realize a set of interfaces; both may participate in dependency, 
generalization, and association relationships; both may be nested; 
both may have instances; both may be participants in interactions. 
However, there are some significant differences between components 
and classes.
Classes represent logical abstractions; components represent 

physical things that live in the world of bits. In short, components 
may live on nodes, classes may not.

Components represent the physical packaging of other logical 
components and are at a different level of abstraction.

Classes may have attributes and operations directly. In general, 
components only have operations that are reachable only through 
their interfaces.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Components and Classes
 A component is the physical implementation of a set of other logical elements, such 

as classes and collaborations
 shows, the relationship between a component and the classes it  implements can be 

shown explicitly by using a dependency relationship.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Components and Interfaces
An interface is a collection of operations that are used to specify a
service of a class or a component. The relationship between
component and interface is important.

All the most
common component-based
operating system facilities
(such as COM+, CORBA,
and Enterprise Java Beans)
use interfaces as the glue
that binds components
together.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Kinds of Components
 Deployment components.

 These are the components necessary and sufficient to form an executable 
system, such as dynamic libraries (DLLs) and executables (EXEs).

 Work product components.
 These components are essentially the residue of the development process, 

consisting of things such as source code files and data files from which 
deployment components are created. These components do not directly 
participate in an executable system but are the work products of 
development that are used to create the executable system.

 Execution components.
 These components are created as a consequence of an executing system, 

such as a COM+ object, which is instantiated from a DLL.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Modeling Executables and Libraries
 To model executables and libraries,
 Identify the partitioning of your physical system.
Model any executables and libraries as components, using 

the appropriate standard elements
 If it's important for you to manage the seams in your system, 

model the significant interfaces that some components use 
and others realize.

 As necessary to communicate your intent, model the 
relationships among these executables, libraries, and 
interfaces.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Modeling Tables, Files, and Documents

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Modeling an API
 An API is essentially an interface that is realized by one or more 

components. As a developer, you'll really care only about the interface 
itself; which component realizes an interface's operations is not 
relevant as long as some component realizes it.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Modeling Source Code

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Component Diagram
 Captures the Physical Structure of the Implementation

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Static: Deployment Diagram
 Deployment Diagram: Focus on the Placement and Configuration of 

Components at Runtime
 Captures the Topology of a System’s Hardware
 Built As Part of Architectural Specification
 Purposes:

 Specify the Distribution of Components
 Identify Performance Bottlenecks

 Main Concepts: Node, Component, Dependency, Location
 Developed by Architects, Networking Engineers, and System Engineers
 Focus is on physical aspects of a system.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Node
 A node is a physical element that exists at run time and 

represents a computational resource, generally having at least 
some memory and, often processing capability.

 A node typically represents a processor or a device on which 
components may be deployed

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Deployment Diagram
 Captures the Topology of a System’s Hardware

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



HospitalServer:Host

PatientRec
DBMSupdate

BloodAnalyzer
(COTS)

Analyzer

TechnicianPC:PC

LabAnalyzer
results

Deployment Diagram
 Deploy Components onto Nodes

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Nodes and Components
 Components are things 

that participate in the 
execution of a system; 
nodes are things that 
execute components.

 Components represent the 
physical packaging of 
otherwise logical 
elements; nodes represent 
the physical deployment of 
components.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Connections

 The most common kind of 
relationship you'll use among 
nodes is an association. 

 In this context, an association 
represents a physical connection 
among nodes, such as an Ethernet 
connection, a serial line, or a 
shared bus, as Figure shows

 You can even use associations to model indirect 
connections, such as a satellite link between 
distant processors.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Combining 
Component and Deployment Diagrams

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Modeling Processors and Devices
 Because all of the UML's extensibility mechanisms apply to 

nodes, you will often use stereotypes to specify new kinds of 
nodes that you can use to represent specific kinds of 
processors and devices. 

 A processor is a node that has processing capability, meaning that it 
can execute a component. 

 A device is a node that has no processing capability (at least, none 
that are modeled at this level of abstraction) and, in general, 
represents something that interfaces to the real world.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Modeling the Distribution of 
Components.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Dynamic: Interaction Diagrams

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 A series of diagrams describing the dynamic behavior of an 
object-oriented system.
 A set of messages exchanged among a set of objects within a 

context to accomplish a purpose.
 Often used to model the way a use case is realized through a 

sequence of messages between objects.
 Interaction diagrams are used for capturing dynamic nature 

of a system



Dynamic: Interaction Diagrams (Cont.)

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 The purpose of Interaction diagrams is to:
 Model interactions between objects
 Assist in understanding how a system (a use case) actually works
 Verify that a use case description can be supported by the 

existing classes
 Identify responsibilities/operations and assign them to classes



Interaction Diagrams (Cont.)

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 UML 
 Collaboration Diagrams
 Emphasizes structural relations between objects

 Sequence Diagram
 Sequence diagrams are used to capture time ordering of message flow

Generally a set of sequence and collaboration diagrams are used 
to model an entire system



Two kinds of UML Interaction Diagrams

 Sequence Diagrams:  show object interactions arranged in 
time sequence, vertically

 Communication Diagrams:  show object interactions 
arranged as a flow of objects and their links to each other, 
numerically

 Semantically equivalent, structurally different
 Sequence diagram emphasize time ordering
 Communication diagrams make object linkages explicit

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Interaction and Message

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

An interaction is a behavior that comprises a set of messages, exchanged 
among a set of objects, to accomplish a specific purpose.

A message is the specification of a communication between objects that 
conveys information, with the expectation that some kind of activity will 
ensue (follow).

From the name Interaction it is clear that the diagram is used to describe 
some type of interactions among the different elements in the model



Interaction..

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 This interactive behavior is represented in UML by two diagrams 
known as Sequence diagram and Collaboration diagram.

 Sequence diagram emphasizes on time sequence of messages and 
collaboration diagram emphasizes on the structural organization of 
the objects that send and receive messages

 The purposes of interaction diagrams are to visualize the 
interactive behavior of the system



Interaction..

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 So the purposes of interaction diagram can be describes as:
 To capture dynamic behavior of a system.
 To describe the message flow in the system.
 To describe structural organization of the objects.
 To describe interaction among objects.



Dynamic: Sequence Diagram
 Sequence Diagram: For a Task, Indicates the Object Interactions 

Over Time that are Needed
 Captures Dynamic Behavior (Time-oriented)
 Purposes:

 Model Flow Of Control
 Illustrate Typical Scenarios
 Provide Perspective on Usage an Flow

 Main Concepts: Interaction, Object, Message, Activation
 Notes: 

 Dynamic Diagrams are Complementary
 Provide Contrasting Perspectives of “Similar” Information and 

Behavior

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Sequence Diagram

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

A sequence diagram is an interaction diagram that emphasizes 
the time ordering of messages.

A lifeline is a vertical dashed line that represents the lifetime of 
an object.

A focus of control is a tall, thin rectangle that shows the period 
of time during which an object is performing an action.



Sequence Diagram Notation

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

: Ticket Agentc: Client

«create»

setItinerary(i)

calculateRoute()
route



Types of Messages
 Synchronous (flow interrupt until the message has 

completed.

 Asynchronous (don’t wait for response)

 Flat – no distinction between sysn/async

 Return – control flow has returned to the caller.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



 Create message
 A create message represents the creation of an instance in an interaction. The create message is 

represented by the keyword «create». The target lifeline begins at the point of the create message.

 Destroy message
 A destroy message represents the destruction of an instance in an interaction. The destroy message is 

represented by the keyword «destroy». The target lifeline ends at the point of the destroy message, and is 
denoted by an X.

 Synchronous call message
 Synchronous calls, which are associated with an operation, have a send and receive message. A message is 

sent from the source lifeline to the target lifeline. The source lifeline is blocked from other operations 
until it receives a response from the target lifeline.

 Asynchronous call message
 Asynchronous calls, which are associated with an operation, typically have only a send message, but can 

also have a reply message. In contrast to a synchronous message, the source lifeline is not blocked from 
receiving or sending other messages. You can also move the send and receive points individually to delay 
the time between the send and receive events. You might choose to do this if a response is not time-
sensitive or order- sensitive.

 Asynchronous signal message
 Asynchronous signal messages, are associated with a signal. A signal differs from a message in that there 

is no operation associated with the signal. A signal can represent an interrupt or error condition. To 
specify a signal, you create an asynchronous call message and change the type in the message properties 
view.Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Synchronous and Asynchronous Calls

If a caller sends a synchronous message, it must wait 

until the message is done, such as invoking a subroutine. 

If a caller sends an asynchronous message, it can 

continue processing and doesn’t have to wait for a response.

You see asynchronous calls in multithreaded applications 

and in message-oriented middleware. 

Asynchrony gives better responsiveness and reduces the 

temporal coupling but is harder to debug.
Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Sequence diagrams 
 Some control information can also be included. 
 Two types of control information are particularly valuable:
 A condition (e.g. [invalid] or [OK] ) indicates that a message is sent, 

only if the condition is true.
 An iteration (*) marker shows the message is sent many times to 

multiple receiver objects as would happen when a collection or the 
elements of an array are being iterated. The basis of the iteration can 
also be indicated e.g. [for every book object].

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Sequence diagrams 

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Lifeline box

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Messages

The first message doesn’t have a participant that sent it, as it comes from 
an undetermined source. It’s called a found message.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Reply or Returns

•Using the message syntax returnVar = message(parameter).
•Using a reply (or return) message line at the end of an activation bar.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Messages to "self" or "this"

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Creation of Instances

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Object Lifelines and Object Destruction

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Diagram Frames

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Conditional Messages

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Mutually Exclusive Conditional 
Messages

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Nesting of frames.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



The first message doesn’t have a participant that sent it, as 
it comes from an undetermined source. It’s called a found 
message.Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Sequence diagram for  book renew use 
case.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Sequence diagram for car parking 

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Sequence diagram of  makePayment
use case

The sequence diagram shown in Figure makePayment is read as follows:
1. The message makePayment is sent to an instance of a Register. The sender is not identified.
2. The Register instance sends the makePayment message to a Sale instance.
3. The Sale instance creates an instance of a Payment.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Sequence

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Sequence Diagram
 Captures Dynamic Behavior (Time-Oriented)

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Sequence Diagram

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Sequence Diagram
HCA

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Dynamic: Collaboration Diagram

 Collaboration Diagram: Structured from the Perspective of 
Interactions Among Objects

 Captures Dynamic Behavior (Message-oriented)
 Purposes:

Model Flow of Control
 Illustrate Coordination of Object Structure and Control
Objects that Interact with Other Objects
Are Collaboration Diagrams Really FSMs?
 Sequence::Time vs. Collaboration::Message

Main Concepts: Collaboration, Interaction, Collaboration 
Role, Message

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Messages, Links, and Sequencing

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Links and Associations

A link is a semantic connection among objects. 
In general, a link is an instance of an association. 
As Figure shows, wherever a class has an association to another class, there may be a 
link between the instances of the two classes; wherever there is a link between two 
objects, one object can send a message to the other object.Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Collaboration Diagram for book renew 
use case

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Procedural Sequence

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Fig: Example of collaboration diagram 
for makePayment

1: makePayment(cashTendered)

1.1: create(cashTendered)

: Register :Sale

:Payment

makePayment(cashTendered)

creation indicated with a
"create" message

direction of message

first message

instance

first internal message

link line

parameter

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Common Interaction Diagram Notation

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Basic Message Expression Syntax

 The UML has a standard syntax for message expressions:
 return := message(parameter : parameterType) : returnType
 Type information may be excluded if obvious or 

unimportant. For example:
 spec := getProductSpect(id)
 spec := getProductSpect(id:ItemID)
 spec := getProductSpect(id:ItemID) ProductSpecification

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Basic Collaboration Diagram Notation
 Links

 A link is a connection path between two objects; it indicates some form of 
navigation and visibility between the objects is possible . More formally, a 
link is an instance of an association. For example, there is a link.or path of 
navigation.from a Register to a Sale, along which messages may flow, such as 
the makePayment message

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Messages

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Messages to "self" or "this"

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Creation of Instances
 Any message can be used to create an instance, but there is a convention in the UML to use a message 

named create for this purpose. If another message name is used, the message may be annotated with a 
special feature called a UML stereotype, like so: «create». 

 The create message may include parameters, indicating the passing of initial values. Furthermore, the 
UML property {new} may optionally be added to the instance box to highlight the creation. 

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Message Number Sequencing

 The order of messages is illustrated with sequence numbers
1. The first message is not numbered. Thus,msg1() is unnumbered.
2. The order and nesting of subsequent messages is shown with a legal numbering 

scheme in which nested messages have a number appended to them.
 Nesting is denoted by prepending the incoming message number to the out going 

message number.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Conditional Messages:
 A conditional message is shown by following a sequence number 

with a conditional clause in square brackets, similar to an 
iteration clause. The message is only sent if the clause evaluates 
to true.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Mutually Exclusive Conditional Paths

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Iteration or Looping

 Iteration notation is shown in Figure below. If the details of 
the iteration clause

 are not important to the modeler, a simple ’*’ can be used.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Collaboration Diagram

 Captures Dynamic Behavior (Message-Oriented)

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Collaboration Diagram

 Convey Same Info as Sequence 
Diagrams but Focus on Object Roles 
instead of messages

 Object Roles are Rectangles 
 E.g., aHotel, aChain, etc.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Collaboration Diagram

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Dynamic: Statechart Diagram
 Statechart Diagrams: Tracks the States that an Object Goes 

Through
 Captures Dynamic Behavior (Event-Oriented)
 Purposes:

Model Object Lifecycle
Model Reactive Objects (User Interfaces, Devices, etc.)
Are Statecharts Complex FSMs?
 Sequence::Time vs. Collaboration::Message vs. 

Statechart::Event
Main Concepts: State, Event, Transition, Action

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



State, Event, and Signal

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

A state is a condition in which an object can reside during its 
lifetime while it satisfies some condition, performs an activity, 
or waits for an event.

An event is a significant occurrence that has a location in time 
and space.

A signal is an asynchronous communication from one object to 
another.



State Notation

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

Idle

Cooling

Heating

Activating

Active



State Machine and Transition

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

A state machine is a behavior that specifies the sequences of 
states that an object goes through in its lifetime, in response to 
events, and also its responses to those events.

A transition is a relationship between two states; it indicates 
that an object in the first state will perform certain actions, 
then enter the second state when a given event occurs.



Entry and Exit Actions

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

An entry action is the first thing that occurs each time an object 
enters a particular  state.

An exit action is the last thing that occurs each time an object 
leaves a particular state.

Tracking
entry/setMode(onTrack)
exit/setMode(offTrack)



Statechart

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Use state diagrams to demonstrate the behavior of an object through 
many use cases of the system. Only use state diagrams for classes 
where it is necessary to understand the behavior of the object through 
the entire system.

 Seminar Registration



Statechart

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Following are the main purposes of using Statechart diagrams.
 To model dynamic aspect of a system.
 To model life time of a reactive system.
 To describe different states of an object during its life time.
 Define a state machine to model states of an object.



Statechart

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Before drawing a Statechart diagram we must have clarified the 
following points:
 Identify important objects to be analyzed.
 Identify the states.
 Identify the events.



Statechart: Seminar Lifecycle

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 Top Level State 
Machine of Seminar



Statechart Diagram

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Activities

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

An activity is an interruptible sequence of actions that an object 
can perform while it resides in a given state. 

Tracking

do/followTarget



State
 A state is a condition or situation during the life of an object 

during which it satisfies some condition, performs some 
activity, or waits for some event. An object remains in a state 
for a finite amount of time.

 For example, a Heater in a home might be in any of four 
states: 
 Idle (waiting for a command to start heating the house),
Activating (its gas is on, but it's waiting to come up to 

temperature), 
Active (its gas and blower are both on), and 
 ShuttingDown (its gas is off but its blower is on, flushing 

residual heat from the system).

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



State

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Transitions
 A transition is a relationship between two states indicating 

that an object in the first state will perform certain actions 
and enter the second state when a specified event occurs and 
specified conditions are satisfied. 

On such a change of state, the transition is said to fire. Until 
the transition fires, the object is said to be in the source 
state; after it fires, it is said to be in the target state. 

 For example, a Heater might transition from the Idle to the 
Activating state when an event such as tooCold (with the 
parameter desiredTemp) occurs.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Transitions

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Advanced States and Transitions

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Substates

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



History States

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Concurrent Sub states

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



State Transition Diagrams

State transition diagrams are a useful tool for constructing the 
individual classes.  Specifically, they aid in two important 
ways in “fleshing out” the structure of the class:

1. method development  -- State transition diagrams provide 
the “blueprints” for developing the algorithms that 
implement methods in the class

2. attribute identification – Attributes contain the state 
information needed for regulating the behaviors of the 
instances of the class

When constructing state transition diagrams, take care to ensure 
that the post-conditions stipulated in the contracts are enforced. 

Hari Prasad Pokhrel  
(hpokhrel24@gmail.com)



State Transition Diagrams

• These diagrams are used to model the entire life 
cycle of an object.

• State of an object is defined as the condition 
where an object resides for a particular time and 
the object again moves to other states when 
some events occur. 

• State chart diagrams are also used for forward 
and reverse engineering.

Hari Prasad Pokhrel  
(hpokhrel24@gmail.com)



State Transition Diagrams

Notation

start

State 1 State 2

final state

event|output

States are represented with 
an oval and label

State transitions are represented 
with a directed arc or line

Transitions are labeled with the triggering 
event and the output if anySome events do not 

trigger a change in state

Hari Prasad Pokhrel  
(hpokhrel24@gmail.com)



State Transition Diagrams

Additional Notation

State State
event|output

[boolean condition]

Guard condition – transition 
occurs only if condition is true

Hari Prasad Pokhrel  
(hpokhrel24@gmail.com)



State Transition Diagrams

Example – Nested States in Telephone Call

activeidle

off hook|dial tone

[valid subscriber]

on hook

talking

do:  hang upplaying dial 
tone

dialing connecting

digit

digit

complete|ringing

answered
The state labeled 
active has substates

Hari Prasad Pokhrel  
(hpokhrel24@gmail.com)



Hari Prasad Pokhrel  
(hpokhrel24@gmail.com)



State Transition Diagrams

Second Example – A Queue of Capacity Two

Size0 Size1 size2

arrival arrival

arrival | balk
departuredeparture

The queue has three states that indicate its number of 
occupants.  When the queue is full, new arrivals 
cannot enter, and must leave the system.

Hari Prasad Pokhrel  
(hpokhrel24@gmail.com)



Statechart Diagram
 Captures Dynamic Behavior (Event-Oriented)

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Statechart Diagram

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Statechart Diagram
 Composite States Illustrated
 Fork and Join Possible 

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



pulse  not
detected

Cuff Deflating (2mmHg/sec)

Systolic
Found

Diastolic
Found

pulse
detected

pulse  not
detected

Cuff Inflating

Cuff Deflating
(max deflation rate)

Idle

pulse
detected

cuff
deflated

em
er

ge
cy

sh
ut-

off

Finding Pulse
start

Finding
Pulse

Statechart Diagram
HCA

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Statechart Diagram

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Dynamic: Activity Diagram
 Activity Diagrams: Represent the Performance of Operations and 

Transitions that are Triggered
 Captures Dynamic Behavior (Activity-Oriented)
 Purposes:

 Model Business Workflows
 Model Operations
 Merging of FSMs and Petri-Net Concepts?
 Sequence::Time vs. Collaboration::Message vs. Statechart::Event vs. 

Activity::Actions

 Main Concepts: State, Activity, Completion Transition, Fork, Join
 Swimlanes Allow Relevant Classes to be Used

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Action States

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Activity: purpose

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

 So the purposes can be described as:
Draw the activity flow of a system.
Describe the sequence from one activity to another.
Describe the parallel, branched and concurrent flow of the system

 before drawing an activity diagram we should identify the 
following elements:
Activities
Association
Conditions
Constraints



State Diagram Carryovers

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

The following items are common to state diagrams and activity 
diagrams:

 activities
 actions
 transitions
 initial/final states Bid plan

Do construction

entry/setLock()



Breaking Up Flows

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

alternate paths:
 branch
 merge
parallel flows:
 fork
 join



Branching

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

A branch has one incoming transition and two or more 
outgoing transitions:

Charge credit
card

Hold in will-callMail tickets

[today � 7 days before show] [today < 7 days before show]



A branch may have one incoming transition and two or more 
outgoing ones. 
On each outgoing transition, you place a Boolean expression, 
which is evaluated only once on entering the branch.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Merging

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

A merge has two or more incoming transitions and one 
outgoing transition:

Customer
sees show

Mail tickets Customer picks
up tickets



Forking

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

A fork represents the splitting of a single flow of control into 
two or more concurrent flows of control:

Receive order

Process orderLog order



Joining

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

A join represents the synchronization of two or more flows of 
control into one sequential flow of control:

Pay bill

Bill customerReceive product



Joins and forks should balance, meaning that the number of flows that leave a fork 
should match the number of flows that enter its corresponding join. 
Also, activities that are in parallel flows of control may communicate with one 
another by sending signals. This style of communicating sequential processes is 
called a coroutine. Most of the time, you model this style of communication using 
active objects.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Hari Prasad Pokhrel  (hpokhrel24@gmail.com)

You'll find it useful, especially when you are modeling workflows of business processes, 
to partition the activity states on an activity diagram into groups, each group 
representing the business organization responsible for those activities.

Swimlanes partition groups of activities based on, for instance, 
business organizations:

Swimlanes

Pay bill

Bill customerReceive product

Customer Billing



A swimlane is a kind of package;

A swimlane really has no deep semantics, except that it may represent 
some real-world entity. Each swimlane represents a high-level
responsibility for part of the overall activity of an activity diagram, 
and each swimlane may eventually be implemented by one or more 
classes

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Modeling a Workflow

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Modeling an Operation

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Activity Diagram

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Activity Diagram

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Activity Diagram
 Captures Dynamic Behavior (Activity-Oriented)

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Activity Diagram

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Breath

Waiting for
Resp. Signal

Resp Signal

timeout

Trigger
Local
Alarm

Trigger
Remote
Alarm

Heartbeat

Waiting for
Heart Signal

Heart Signal

irregular beat

Alarm Reset

Activity Diagram
HCA

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Architecture and the UML

Organization
Package, subsystem

Dynamics
Interaction
State machine

Design View Implementation View

Process View

Components 
Classes, interfaces,
collaborations

Active classes

Deployment View

Nodes

Use Case View
Use cases

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



From UML to the Unified Process
 UML as a Model Can’t Work in Isolation
 Large Scale System Design/Development Involves
 Team-Oriented Efforts
 Software Architectural Design
 System Design, Implementation, Integration

 The  Unified Process by Rational is
 Iterative and Incremental
 Use Case Driven
 Architecture-Centric

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Creating the Unified Process

Functional testing
Performance testing
Requirements mgmt
Conf. and change mgmt
Business engineering
Data engineering
UI design

Rational Unified Process 5.0
1998

Rational Objectory Process 4.1
1996-1997

Objectory Process 1.0-3.8
1987-1995

The Ericsson Approach

The Rational Approach UML

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



New or changed

requirements

New or changed 

system

Software Engineering
Process

What Is a Process? 
 Defines Who is doing What, When to do it, and How to reach a 

certain goal.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Lifecycle Phases

 Inception Define the scope of the 
project /develop business case

 Elaboration Plan project, specify features, and 
baseline the architecture

 Construction Build the product
Transition Transition the product to its users

time

Inception Elaboration Construction Transition

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Management
Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary 
Iteration(s)

Iter.
#1

Phases
Process Workflows

Iterations

Supporting Workflows

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration Mgmt

Requirements

Elaboration TransitionInception Construction

Unified Process Structure
Iterations and Workflow

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Workflows and Models
Requirements

Design

Implementation

Test

Analysis

Use Case
Model

Design
Model

Deploym.
Model

Impl.
Model

Analysis
Model

Test
Model

UML diagrams provide 
views into each model

Each workflow is 
associated with one or 
more models.

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Use Case Model Use Case
Diagrams

Collaboration
Diagrams

Component
Diagrams

Deployment
Diagrams

Object
Diagrams

Statechart
Diagrams

Sequence
Diagrams

Class
Diagrams

Activity
Diagrams

Use Case
Model

Design
Model

Depl.
Model

Impl.
Model

Analysis
Model

Test
Model

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Analysis & Design ModelUse Case
Diagrams

Collaboration
Diagrams

Component
Diagrams

Deployment
Diagrams

Object
Diagrams

Statechart
Diagrams

Sequence
Diagrams

Class
Diagrams

Activity
Diagrams

Use Case
Model

Design
Model

Depl.
Model

Impl.
Model

Analysis
Model

Test
Model

Incl. subsystems 
and packages

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Deployment and Implementation 
Model Use Case

Diagrams

Collaboration
Diagrams

Component
Diagrams

Deployment
Diagrams

Object
Diagrams

Statechart
Diagrams

Sequence
Diagrams

Class
Diagrams

Activity
Diagrams

Use Case
Model

Design
Model

Depl.
Model

Impl.
Model

Analysis
Model

Test
Model

Incl. active classes 
and components

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Test Model Use Case
Diagrams

Collaboration
Diagrams

Component
Diagrams

Deployment
Diagrams

Object
Diagrams

Statechart
Diagrams

Sequence
Diagrams

Class
Diagrams

Activity
Diagrams

Use Case
Model

Design
Model

Depl.
Model

Impl.
Model

Analysis
Model

Test
Model

Test model refers to 
all other models and 
uses corresponding 
diagrams 

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Use Case Driven

Reqmt.’s Impl. Test

Use Cases (scenarios) bind these workflows together

Analysis Design

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Use Cases Drive Iterations
 Drive a Number of Development Activities
 Creation and Validation of the System’s Architecture
 Definition of Test Cases and Procedures 
 Planning of Iterations
 Creation of User Documentation
 Deployment of System

 Synchronize the Content of Different Models

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Architecture-Centric
 Models Are Vehicles for Visualizing, Specifying, Constructing, 

and Documenting Architecture

 The Unified Process Prescribes the Successive Refinement of an 
Executable Architecture

time

Architecture

Inception Elaboration Construction Transition

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Architecture and Models

Architecture embodies a collection of views of the models

Views

Models

Use Case
Model

Design
Model

Deploym.
Model

Impl.
Model

Test
Model

Analysis
Model

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Logical Application Architecture

Relational
Database

Graphical
User
Interface

Relational
Database

Graphical
User
Interface

Business
Object
Model

Graphical
User
Interface

Business
Object
Model

Relational
Database

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Physical Application Architecture

Relational Database Server(s)

Client C
WWW Browser

Web
Server

HTML
CGI ASPJava
Business Object

Services
Business Object

Engine

Application
Business Object

Services

Client A

Business Object
Engine

Thinner client, thicker server
Client B

Application

Business Object
Services

Business Object
Engine

Business 
Object Server

DCOM
ADO/RCORBABeans

COM
MTS

Beans
ETS

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Complex Internet System

The Second Wave
Paul Dreyfus, Netscape

Client

Server

Application
Server

Fulfillment
System

Financial
System

Inventory
System

RDBMS
Server

Dynamic HTML, JavaScript, Java
plug-ins, source code enhancements

Java, C, C++, JavaScript, CGI

Java, C, C++, 
JavaBeans, CORBA, 
DCOM

Native 
languages

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



Use cases Architecture

Function versus Form

 Use Case Specify Function; Architecture Specifies Form
 Use Cases and Architecture Must Be Balanced

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)



The Unified Process is Engineered

Describe a 
Use Case

Use case 
package

Use case

responsible for

Analyst

Artifact

A piece of information that is 
produced, modified, or used 
by a process

Worker

A role played by an 
individual or a team

Activity

A unit of work

Hari Prasad Pokhrel  (hpokhrel24@gmail.com)


