System

- The term system is derived from the Greek word *systema*, which means an organized relationship among functioning units or components.
- System exists because it is designed to achieve one or more objectives.
- We come into daily contact with the transportation system, the telephone system, the accounting system, the production system, and for two decades the computer system.
- There are more than a hundred definitions of the word system, but most seem to have a common thread that suggests that a system is an orderly grouping of interdependent components linked together according to a plan to achieve a specific objective.

The study of the systems concepts, then, has three basic implications:
1. A system must be designed to achieve a predetermined objective
2. Interrelationships and interdependence must exist among the components
3. The objectives of the organization as a whole have a higher priority than the objectives of its subsystems.

Klir* gives a collection of 24 definitions one such definition is “A system is a collection of components wherein individual components are constrained by connecting interrelationships such that the system as a whole fulfills some specific functions in response to varying demands”

Introduction

System
A system exists and operates in time and space.

Model
A model is a simplified representation of a system at some particular point in time or space intended to promote understanding of the real system.

Simulation
A simulation is the manipulation of a model in such a way that it operates on time or space to compress it, thus enabling one to perceive the interactions that would not otherwise be apparent because of their separation in time or space.

Concept of Simulation
- Simulation is the representation of a real life system by another system, which depicts the important characteristics of the real system and allows experimentation on it.
- In another word simulation is an imitation of the reality.
- Simulation has long been used by the researchers, analysts, designers and other professionals in the physical and non-physical experimentations and investigations.
Why Simulate?
- It may be too difficult, hazardous, or expensive to observe a real, operational system.
- Parts of the system may not be observable (e.g., internals of a silicon chip or biological system).

Uses of simulations
- Analyze systems before they are built.
- Reduce number of design mistakes.
- Optimize design.
- Analyze operational systems.
- Create virtual environments for training, entertainment.

When to use Simulation
- Over the years tremendous developments have taken place in computing capabilities and in special purpose simulation languages, and in simulation methodologies.
- The use of simulation techniques has also become widespread.

Following are some of the purposes for which simulation may be used.

1. Simulation is very useful for experiments with the internal interactions of a complex system, or of a subsystem within a complex system.
2. Simulation can be employed to experiment with new designs and policies, before implementing.
3. Simulation can be used to verify the results obtained by analytical methods and reinforce the analytical techniques.
4. Simulation is very useful in determining the influence of changes in input variables on the output of the system.
5. Simulation helps in suggesting modifications in the system under investigation for its optimal performance.

Types of Simulation Models
- Simulation models can be classified as being static or dynamic, deterministic or stochastic and discrete or continuous.
- A static simulation model represents a system, which does not change with time or represents the system at a particular point in time.
- Dynamic simulation models represent systems as they change over time.
- Deterministic models have a known set of inputs, which result into unique set of outputs.
- In stochastic model, there are one or more random input variables, which lead to random outputs.
- System in which the state of the system changes continuously with time are called continuous systems while the systems in which the state changes abruptly at discrete points in time called discrete systems.
Steps in simulation study

- Problem formation
- Model construction
- Data Collection
- Model programming
- Validation
- Design of experiment
- Simulation run and analysis
- Documentation
- Implementation

Phases In Simulation Study

This process is divide into four phases

Phase1: Problem Formulation: This includes problem formulation step.

Phase2: Model Building: This includes model construction, data collection, programming, and validation of model.

Phase3: Running the Model: This includes experimental design, simulation runs and analysis of results.

Phase4: Implementation: This includes documentation and implementation.
MODEL CONCEPTUALIZATION

Model Development Life Cycle

- Define Goals and Objectives of Study
- Develop Conceptual Model
- Develop Specification of Model
- Develop Conceptual Model
- Verify Model
- Validate Model
Advantages of Simulation

- Simulation helps to learn about real system, without having the system at all. For example the wind tunnel testing of the model of an aeroplane does not require a full sized plane.
- Many managerial decision making problems are too complex to be solved by mathematical programming.
- In many situations experimenting with actual system may not be possible at all. For example, it is not possible to conduct experiment, to study the behavior of a man on the surface of moon. In some other situations, even if experimentation is possible, it may be too costly and risky,
- In the real system, the changes we want to study may take place too slowly or too fast to be observed conveniently. Computer simulation can compress the performance of a system over years into a few minutes of computer running time.
- Conversely, in systems like nuclear reactors where millions of events take place per second, simulation can expand the time to required level.
- Through simulation, management can foresee the difficulties and bottlenecks, which may come up due to the introduction of new machines, equipments and processes. It thus eliminates the need of costly trial and error method of trying out the new concepts.
- Simulation being relatively free from mathematics can easily be understood by the operating personnel and non-technical managers. This helps in getting the proposed plans accepted and implemented.
- Simulation Models are comparatively flexible and can be modified to accommodate the changing environment to the real situation.
- Simulation technique is easier to use than the mathematical models, and can be used for wide range of situations.
- Extensive computer software packages are available, making it very convenient to use fairly sophisticated simulation models.
- Simulation is a very good tool of training and has advantageously been used for training the operating and managerial staff in the operation of complex system. Space engineers simulate space flights in laboratories to train the future astronauts for working in weightless environment.
- Airline pilots are given extensive training on flight simulators, before they are allowed to handle real planes.

Disadvantages of Simulation

- Model building requires special training. It is an art that is learned over time and through experience. Furthermore, if two models are constructed by two competent individuals, they may have similarities, but it is highly unlike that they will be the same.
Simulation results may be difficult to interpret. Since most simulation outputs are essentially random variables, it may be hard to determine whether an observation is a result of system interrelations or randomness.

Simulation is used in some cases when an analytical solution is possible, or even preferable.

Simulation modeling and analysis can be time consuming and expensive.

Areas of Applications

- **Manufacturing**: Design analysis and optimization of production system, materials management, capacity planning, layout planning, and performance evaluation, evaluation of process quality.
- **Business**: Market analysis, prediction of consumer behavior, and optimization of marketing strategy and logistics, comparative evaluation of marketing campaigns.
- **Military**: Testing of alternative combat strategies, air operations, sea operations, simulated war exercises, practicing ordinance effectiveness, inventory management.
- **Healthcare applications**: such as planning of health services, expected patient density, facilities requirement, hospital staffing, estimating the effectiveness of a health care program.
- **Communication Applications**: Such as network design, and optimization, evaluating network reliability, manpower planning, sizing of message buffers.
- **Computer Applications**: Such as designing hardware configurations and operating system protocols, sharing networking.
- **Economic applications**: such as portfolio management, forecasting impact of Govt. Policies and international market fluctuations on the economy. Budgeting and forecasting market fluctuations.
- **Transportation applications**: Design and testing of alternative transportation policies, transportation networks-roads, railways, airways etc. Evaluation of timetables, traffic planning.
- **Environment application**: Solid waste management, performance evaluation of environmental programs, evaluation of pollution control systems.
- **Biological applications**: Such as population genetics and spread of epidemics.