
[Object Oriented Analysis and Design] Chapter: 1 Complexity

Compiled By: Hari Prasad Pokhrel [hpokhrel24@gmail.com] Reference: OOAD By Grady Booch 1

Chapter1: Complexity

As Brooks suggests, "The complexity of software is an essential property, not an

accidental one“

Software is inherently complex; the complexity of software systems often exceeds the
human intellectual capacity. The task of the software development team is to engineer the
illusion of simplicity

Inherent complexity derives from four elements (Elements of Complexity)
Why Software is inherently Complex ?

1. The complexity of the problem domain
It’s a external complexity. Impedance mismatch that exists between the users of a

system and its developers: users generally find it very hard to give precise expression to

their needs in a form that developers can understand In extreme cases, users may have

only vague ideas of what they want in a software system. This is not so much the fault of

either the users or the developers of a system; rather, it occurs because each group

generally lacks expertise in the domain of the other.

The common way of expressing requirements today is with large volumes of text,

occasionally accompanied by a few drawings. Such documents are difficult to

comprehend, are open to varying interpretations, and too often contain elements that are

designs rather than essential requirements

Requirements Change A further complication is that the requirements of a software

system often change during its development, largely because the very existence of a

software development project alters the rules of the problem

2. The difficulty of managing the developmental process
Many modules, many developers, need of proper Communication/coordination tool:

No one person can ever understand a system completely. Even if we decompose our

implementation in meaningful ways, we still end up with hundreds and sometimes

thousands of separate modules. This amount of work demands that we use a team of

developers, and ideally we use as small a team as possible. However, no matter what its

[Object Oriented Analysis and Design] Chapter: 1 Complexity

Compiled By: Hari Prasad Pokhrel [hpokhrel24@gmail.com] Reference: OOAD By Grady Booch 2

size, there are always significant challenges associated with team development. More

developers mean more complex communication and hence more difficult coordination,

particularly if the team is geographically dispersed, as is often the case in very large

projects. With a team of developers, the key management challenge is always to maintain a

unity and integrity of design.

3. The flexibility possible through software
Software offers the ultimate flexibility, so it is possible for a developer to express almost

any kind of abstraction. This flexibility turns out to be an incredibly seductive property,

however, because it also forces the developer to craft virtually all the primitive building

blocks upon which these higher-level abstractions stand. While the construction industry has

uniform building codes and standards for the quality of raw materials, few such standards

exist in the software industry. As a result, software development remains a labor-

intensive business

Example: A home-building company generally does not operate its own tree farm from

which to harvest trees for lumber; it is highly unusual for a construction firm to build an on-

site steel mill to forge custom girders for a new building. Yet in the software industry such

practice is common.

4. The problems of characterizing the behavior of discrete systems.
External event may corrupt the state of a system because its designers failed to take

into account certain interactions among events. If any system is described by a

continuous function, we are saying that it can contain no hidden surprises. Small changes

in inputs will always cause correspondingly small changes in outputs. On the other hand,

discrete systems by their very nature have a finite number of possible states; in large

systems, there is a combinatorial explosion that makes this number very large.

In continuous system one state may not change the other state/behavior change would be

unlikely, but in discrete systems all external events can affect any part of the system's

internal state. Certainly, this is the primary motivation for vigorous testing of our

systems, but for all except the most trivial systems, exhaustive testing is impossible. For

example, imagine a commercial airplane whose flight surfaces and cabin environment are

[Object Oriented Analysis and Design] Chapter: 1 Complexity

Compiled By: Hari Prasad Pokhrel [hpokhrel24@gmail.com] Reference: OOAD By Grady Booch 3

managed by a single computer. We would be very unhappy if, as a result of a passenger

in seat 38J turning on an overhead light, the plane immediately executed a sharp dive

Since we have neither the mathematical tools nor the intellectual capacity to model the

complete behavior of large discrete systems, we must be content with acceptable levels of

confidence regarding their correctness.

Common Attributes of Complex System

1. Hierarchical and interacting subsystems

 Frequently, complexity takes the form of a hierarchy, whereby a complex system is

composed of interrelated subsystems that have in turn their own subsystems, and so on,

until some lowest level of elementary components is reached.

2. Arbitrary determination of primitive components

The choice of what components in a system are primitive is relatively arbitrary and is

largely up to the discretion of the observer of the system.

3. Stronger intra-component than inter-component link

Intra-component linkages are generally stronger than inter-component linkages. This fact

has the effect of separating the high-frequency dynamics of the components - involving

the internal structure of the components - from the low-frequency dynamics - involving

interaction among components.

4. Combine and arrange common rearranging subsystems

Hierarchic systems are usually composed of only a few different kinds of subsystems in

various combinations and arrangements . i.e complex systems have common patterns.

5. Evolution from simple to complex systems

A complex system that works is invariably found to have evolved from a simple system

that worked.... A complex system designed from scratch never works and cannot be

patched up to make it work. You have to start over, beginning with a working simple

system

[Object Oriented Analysis and Design] Chapter: 1 Complexity

Compiled By: Hari Prasad Pokhrel [hpokhrel24@gmail.com] Reference: OOAD By Grady Booch 4

Managing the Complexity
There are mainly three things which plays the vital role for managing the complexity, which are:

1. Decomposition

2. Abstraction

3. Hierarchical

1. The Role of Decomposition
The technique of mastering complexity has been known since ancient times: divide et

impera (divide and rule)". When designing a complex software system, it is essential to

decompose it into smaller and smaller parts, each of which we may then refine

independently. to understand any given level of a system, we need only comprehend a

few parts (rather than all parts) at once. Intelligent decomposition directly addresses the

inherent complexity of software by forcing a division of a system's state space.

Decomposition Types:

1. Algorithmic Decomposition

2. Object-Oriented Decomposition

Algorithmic Decomposition

 Each module in the system denotes a major step in some overall process

 Top –down structured design ,so this approaches of decomposition is a simple

approach of decomposition

 The decomposition structure chart shows the relationships among various

functional elements of the solution

 Fig below is the particular structure chart, which illustrates part of the design of a

program that updates the content of a master file

[Object Oriented Analysis and Design] Chapter: 1 Complexity

Compiled By: Hari Prasad Pokhrel [hpokhrel24@gmail.com] Reference: OOAD By Grady Booch 5

Fig: Algorithmic Decomposition

Object Oriented Decomposition

 Decomposes the system according to the key abstractions in the problem domain, rather

than decomposing the problem into steps

 Bottom up approach of decomposition

 In Object oriented decomposition we view the world as a set of autonomous agents that

collaborate to perform some higher level behavior.

 In this decomposition method ,each object in our solution embodies its own behavior

and each one models some object in the real world.

 E.g. Here, rather than decomposing the problem into steps such as Get Formatted

Update and Add Checksum we have identified objects such as Master File and

Checksum ,which derive directly from the vocabulary of problem domain. Although

both designs solve the same problem they do so in quite different way.

[Object Oriented Analysis and Design] Chapter: 1 Complexity

Compiled By: Hari Prasad Pokhrel [hpokhrel24@gmail.com] Reference: OOAD By Grady Booch 6

Algorithmic Vs Object Oriented Decomposition
1. Algorithmic view highlights the ordering of events and the Object oriented view

emphasizes the agents that either cause action or are the subjects upon which these operation

acts

2. Algorithmic decomposition is a top down approach where as Object oriented

decomposition is bottom up approach of decomposition

3. Object oriented approach is better at helping us organizing the inherent complexity of

software systems , just as it helped us to describe the organized complexity of complex

systems

4. Object Oriented decomposition yields smaller systems through the reuse of common

mechanism thus it provides an important economy of expressions

5. OO Systems are also more resilient to change and thus better able to evolve over time

6. OOD decomposition greatly reduces the risk of building complex software systems because

they are designed to evolve incrementally from smaller systems in which we already have

confidence

7. OO decomposition directly addresses the inherent complexity of software by helping us

make intelligent decisions regarding the separation of concerns in a large state space.

Role of Abstraction

[Object Oriented Analysis and Design] Chapter: 1 Complexity

Compiled By: Hari Prasad Pokhrel [hpokhrel24@gmail.com] Reference: OOAD By Grady Booch 7

Abstraction is powerful technique for dealing with complexity. If we unable to master the entirety

of a complex object, we choose to ignore its inessential details, dealing instead with the

generalized, idealized model of the object.
Abstraction is the selective examination of certain aspects of a problem while ignoring the remaining
aspects of the problem. This mechanism allows us to represents a problem in a simpler way by omitting
unimportant details.

An abstractions means that each object hides from other objects the exact way in which its internal

information is organized and manipulated. It only provides a set of methods which other objects can use

for accessing and manipulating this private information of the object.
For example, when studying how photosynthesis works in a plant, we can focus upon the

chemical reactions in certain cells in a leaf, and ignore all other parts, such as the roots and stems

Role of Hierarchy
Explicitly recognizing the class and object hierarchies within a complex software system is

another way to increase the semantic content of individual chunks of information is i.e . while

designing a complex software system ,by finding hierarchies of objects and their corresponding

classes we can manage complexity easily.

Object structure illustrates how different objects collaborate with one another through patterns

of interaction that we call mechanisms.

The class structure highlights common structure and behavior within a system.

By classifying objects into groups of related abstractions (for example, kinds of plant cells versus

animal cells), we come to explicitly distinguish the common and distinct properties of different

objects, which further helps us to master their inherent complexity.

Identifying the hierarchies within a complex software system is often not easy, because it

requires the discovery of patterns among many objects, each of which may embody some

tremendously complicated behavior. Once we have exposed these hierarchies, however, the

structure of a complex system, and in turn our understanding of it, becomes vastly simplified.

The Meaning of Design
Design encompasses the disciplined approach we use to invent a solution for some problem, so

design providing a path from requirements to implementation. In terms of Software Engineering

[Object Oriented Analysis and Design] Chapter: 1 Complexity

Compiled By: Hari Prasad Pokhrel [hpokhrel24@gmail.com] Reference: OOAD By Grady Booch 8

design is the process of defining and developing Architecture, data structures, algorithm and

selecting proper database architecture and data types.

Purpose of design

The purpose of the design is to construct a system that:

• "Satisfies a given (perhaps informal) functional specification
• Conforms to limitations of the target medium
• Meets implicit or explicit requirements on performance and resource usage
• Satisfies implicit or explicit design criteria on the form of the artifact
• Satisfies restrictions on the design process itself, such as its length or cost, or the tools

available for doing the design

As Stroustrup suggests, "the purpose of design is to create a clean and relatively simple internal
structure, sometimes also called architecture. A design is the end product of the design process".

Design involves balancing a set of competing requirements. The products of design are models
that enable us to reason about our structures, make trade-offs when requirements conflict, and in
general, provide a blueprint for implementation.

The Elements of Software Design Methods
There is no magic, no "silver bullet” , that: can unfailingly lead the software engineer down the

path from requirements to the implementation of a complex software system

 Notation The language for expressing each model
 Process The activities leading to the orderly construction of the system's models
 Tools The artifacts that eliminate the tedium of model building and enforce rules about

the models themselves, so that errors and inconsistencies can be exposed

The Models of Object-Oriented Development

Building models is a best way to decompose a complex system into manageable and simple
system structure.

 Model building is so important to the systems, object-oriented development offers a rich set of
models which are used to describe complex system . The different types of models are shown in
fig below.

[Object Oriented Analysis and Design] Chapter: 1 Complexity

Compiled By: Hari Prasad Pokhrel [hpokhrel24@gmail.com] Reference: OOAD By Grady Booch 9

The models of object-oriented analysis and design reflect the importance of explicitly capturing
both the class and object hierarchies of the system under design.
These models also cover the spectrum of the important design decisions that we must consider in
developing a complex system, and so encourage us to craft implementations that embody the five
attributes of well-formed complex systems.

Importance of Model Building

Model building appeals to the principles of decomposition, abstraction, and hierarchy. Each
model within a design describes a specific aspect of the system under consideration. As much as
possible, we seek to build new models upon old models in which we already have confidence.

Models give us the opportunity to fail under controlled conditions. We evaluate each model
under both expected and unusual situations, and then alter them when they fail to behave as we
expect or desire.
In order to express all the subtleties of a complex system, we must use more than one kind of
model. For example, when designing a single-board computer, an electrical engineer must take
into consideration the gate-level view of the system as well as the physical layout of integrated
circuits on the board. Gate level view: logical model, physical layout: physical view

