
Chapter 4: Implementation

The UML artifacts created during the design work the interaction diagrams and DCDs will be
used as input to the code generation process.

4.1 Programming and Iterative, Evolutionary Development

The creation of code in an OO language such as Java or C# is not part of OOA/D it's an end goal.
The artifacts created in the Design Model provide some of the information necessary to generate
the code.

A strength of use cases plus OOA/D plus OO programming is that they provide an end-to-end
roadmap from requirements through to code. The various artifacts feed into later artifacts in a
traceable and useful manner, ultimately culminating in a running application. This is not to
suggest that the road will be smooth, or can simply be mechanically followed there are many
variables. But having a roadmap provides a starting point for experimentation and discussion.

A strength of an iterative and incremental development process is that the results of a prior
iteration can feed into the beginning of the next iteration (see Figure). Thus, subsequent analysis
and design results are continually being refined and enhanced from prior implementation work.
For example, when the code in iteration N deviates from the design of iteration N (which it
inevitably will), the final design based on the implementation can be input to the analysis and
design models of iteration N+l.

Fig: Implementation in an iteration influences later design.
An early activity within an iteration is to synchronize the design diagrams; the earlier diagrams
of iteration N will not match the final code of iteration N, and they need to be synchronized
before being extended with new design results.

4.1.2 Creativity and Change During Implementation

Some decision-making and creative work was accomplished during design work. It will be seen
during the following discussion that the generation of the code in these examples a relatively
mechanical translation process.

However, in general, the programming work is not a trivial code generation step quite the
opposite! Realistically, the results generated during design modeling are an incomplete first step;
during programming and testing, myriad changes will be made and detailed problems will be
uncovered and resolved.

Done well, the ideas and understanding (not the diagrams or documents!) generated during OO
design modeling will provide a great base that scales up with elegance and robustness to meet the
new problems encountered during programming. But, expect and plan for lots of change and
deviation from the design during programming. That's a key and pragmatic attitude in iterative
and evolutionary methods.

4.2 Mapping Designs to Code

In UP terms, there exists an Implementation Model. This is all the implementation artifacts, such
as the source code, database definitions, JSP/XML/HTML pages, and so forth. Thus, the code
being created in this chapter can be considered part of the UP Implementation Model.

4.2.1 Language Samples
Java is used for the examples because of its widespread use and familiarity. However, this is not
meant to imply a special endorsement of Java; C#, Visual Basic, C++, Smalltalk, Python, and
many more languages are amenable to the object design principles and mapping to code
presented in this case study.

4..2.2 Mapping Designs to Code

Implementation in an object-oriented language requires writing source code for:

 Class and interface definitions
 Method definitions

4.2.3 Creating Class Definitions from DCDs (Design Class Diagrams)

At the very least, DCDs depict the class or interface name, super classes, operation signatures,
and attributes of a class. This is sufficient to create a basic class definition in an OO language. If
the DCD was drawn in a UML tool, it can generate the basic class definition from the diagrams.

4.2.3.1 Defining a Class with Method Signatures and Attributes

From the DCD, a mapping to the attribute definitions (Java fields) and method signatures for the
Java definitionof SalesLineItem is straightforward, as shown in Figure 4.1

Fig 4.1: SalesLineItem in Java.

Note the addition in the source code of the Java constructor SalesLineItem(…). It is derived from
the create(desc, qty) message sent to a SalesLineItem in the enterItem interaction diagram. This
indicates, in Java, that a constructor supporting these parameters is required. The create method
is often excluded from the class diagram because of its commonality and multiple interpretations,
depending on the target language.

4.3.2.2 Adding Reference Attributes

A reference attribute is an attribute that refers to another complex object, not to a primitive type
such as a String, Number, and so on. The reference attributes of a class are suggested by the
associations and navigability in a class diagram. For example, a SalesLineItem has an association
to a ProductSpecification, with navigability to it. It is common to interpret this as a reference
attribute in class SalesLineItem that refers to a ProductSpecification instance (see Figure below).

In Java, this means that an instance field referring to a ProductSpecification instance is
suggested.

Fig: Adding Reference Attributes

Note that reference attributes of a class are often implied, rather than explicit, in a DCD. For
example, although we have added an instance field to the Java definition of SalesLineltem to
point to a ProductSpecification, it is not explicitly declared as an attribute in the attribute section
of the class box. There is a suggested attribute visibility—indicated by the association and
navigability—which is explicitly defined as an attribute during the code generation phase.

4.2.3.3 Reference Attributes and Role Names

The next iteration will explore the concept of role names in static structure diagrams.

Each end of an association is called a role. Briefly, a role name is a name that identifies the role
and often provides some semantic context as to the nature of the role. If a role name is present in
a class diagram, use it as the basis for the name of the reference attribute during code generation,
as shown in Figure below.

Fig: Role names may be used to generate instance variable names.

4.3.2.4 Mapping Attributes

The Sale class illustrates that in some cases one must consider the mapping of attributes from the
design to the code in different languages. Figure fig illustrates the problem and its resolution.

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem()
makePayment()
getTtotal()

public class Sale
{
private Date dateTime = new Date();
...
}

In Java, the java.util.Date class combines both date and
timestamp information. Therefore, the separate
attributes in the design can be collapsed when mapping
to Java.

Fig: Mapping date and time to Java.

4.4 Creating Methods from Interaction Diagrams

The sequence of the messages in an interaction diagram translates to a series of statements in the
method definitions. The enterItem interaction diagram in Figure 4.2 illustrates the Java definition

of the enterItem method. For this example, we will explore the implementation of the Register
and its enterItem method. A Java definition of the Register class is shown in Figure

Fig 4.2 : The enterItem interaction diagram.

The enterItem message is sent to a Register instance; therefore, the enterItem method is defined
in class Register.

public void enterItem(ItemID itemID, int qty)

Message 1: A getProductDescription message is sent to the ProductCatalog to retrieve a
ProductDescription.

ProductDescription desc = catalog.getProductDescription(itemID);

Message 2: The makeLineItem message is sent to the Sale.

currentSale.makeLineItem(desc, qty);

In summary, each sequenced message within a method, as shown on the interaction diagram, is
mapped to a statement in the Java method. The complete enterItem method and its relationship to
the interaction diagram is shown in Figure 4.3

Fig: The Register class.

Fig: The enterItem method.

4.5 Collection Classes in Code
A collection is a group of data manipulate as a single object. Corresponds to a bag.

 Collection classes insulate client programs from the implementation. Eg. array, linked
list, hash table, balanced binary tree

 Insulate client programs from the implementation.n array, linked list, hash table, balanced
binary tree

 Like C++'s Standard Template Library (STL)
 Can grow as necessary.
 Contain only Objects (reference types).
 Heterogeneous.
 Can be made thread safe (concurrent access).
 Can be made not-modifiable.

In real worlds ,One-to-many relationships are common. For example, a Sale must maintain
visibility to a group of many SalesLineItem instances, as shown in Figure 4.5. In OO
programming languages, these relationships are usually implemented with the introduction of a
collection object, such as a List or Map, or even a simple array.

Collection Interfaces

Collections are primarily defined through a set of interfaces. Supported by a set of classes that
implement the interfaces. Interfaces are used of flexibility reasons:

 Programs that uses an interface is not tightened to a specific implementation of a
collection.

 It is easy to change or replace the underlying collection class with another (more
efficient) class that implements the same interface.

Example :

Fig: Adding Collection

For example, the Java libraries contain collection classes such as ArrayList and HashMap, which
implement the List and Map interfaces, respectively. Using ArrayList, the Sale class can define
an attribute that maintains an ordered list of SalesLineItem instances.
The choice of collection class is of course influenced by the requirements; key-based lookup
requires the use of a Map, a growing ordered list requires a List, and so on.
As a small point, note that the lineItems attribute is declared in terms of its interface.
Guideline: If an object implements an interface, declare the variable in terms of the interface, not
the concrete class.
For example, in Figure the definition for the lineItems attribute demonstrates this guideline:
private List lineItems = new ArrayList();

Collections in Java

ArrayList :

 is an array based implementation where elements can be accessed directly via the get and
set methods.

 Default choice for simple sequence.
LinkedList

 is based on a double linked list n Gives better performance on add and remove
compared to ArrayList.

 Gives poorer performance on get and set methods compared to ArrayList.

Note: The classes ArrayList and LinkedList implement the List interface.
Difference between Array and Collection

Array

 Holds objects of known type.
 Fixed size.

Collections

 Generalization of the array concept.
 Set of interfaces defined in Java for storing object.
 Multiple types of objects.
 Resizable.

Example : Use of LinkedList Collection type

4.6 Exceptions and Error Handling

Exception handling has been ignored so far in the development of a solution. This was
intentional to focus on the basic questions of responsibility assignment and object design.
However, in application development, it's wise to consider the large-scale exception handling
strategies during design modeling (as they have a large-scale architectural impact), and certainly
during implementation. Briefly, in terms of the UML, exceptions can be indicated in the property
strings of messages and operation declarations.

An exception is a condition that is caused by a runtime error in the program. Provide a
mechanism to signal errors directly without using flags. Allow errors to be handled in one central
part of the code without cluttering code. An exception is a problem that arises during the
execution of a program. An exception can occur for many different reasons, including the
following:

 A user has entered invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications, or the JVM has run
out of memory.

Some of these exceptions are caused by user error, others by programmer error, and others by
physical resources that have failed in some manner.

To understand how exception handling works, you need to understand the three categories of
exceptions:

 Checked exceptions: A checked exception is an exception that is typically a user error or a
problem that cannot be foreseen by the programmer. For example, if a file is to be opened, but
the file cannot be found, an exception occurs. These exceptions cannot simply be ignored at the
time of compilation.

 Runtime exceptions: A runtime exception is an exception that occurs that probably could have
been avoided by the programmer. As opposed to checked exceptions, runtime exceptions are
ignored at the time of compilation.

 Errors: These are not exceptions at all, but problems that arise beyond the control of the user or
the programmer. Errors are typically ignored in your code because you can rarely do anything
about an error. For example, if a stack overflow occurs, an error will arise. They are also ignored
at the time of compilation.

When the JVM(Java Virtual Machine) encounters an error such as divide by zero, it creates an
exception object and throws it – as a notification that an error has occurred. I f the exception
object is not caught and handled properly; the interpreter will display an error and terminate the
program. If we want the program to continue with execution of the remaining code, then we
should try to catch the exception object thrown by the error condition and then take appropriate
corrective actions. This task is known as exception handling.

Some Common Example of Exceptions:

 ArithmeticException
 ArrayIndexOutOfBoundException
 ArrayStoreException
 FileNotFoundException
 IOException – general I/O failure
 NullPointerException – referencing a null object
 OutOfMemoryException
 SecurityException – when applet tries to perform an action not allowed by the browser’s

security setting.
 StackOverflowException
 StringIndexOutOfBoundException

Exception Handling Process

 A method can signal an error condition by throwing an exception – throws
 The calling method can transfer control to a exception handler by catching an exception -

try, catch
 Clean up can be done by – finally

 Try block, code that could have exceptions errors
 Catch block(s), specify code to handle various types of exceptions. First block to have

appropriate type of exception is invoked.
 If no ‘local’ catch found, exception propagates up the method call stack, all the way to

main()
 Any execution of try, normal completion, or catch then transfers control on to finally

block

Fig: Example of Exception Handling

Fig: Example of Exception Handling with finely

Example of Exception Hierarchy in Java

Fig: Exception class hierarchy in java

Fig: Exception class hierarchy in C#

Declaring you own Exception(User defined Exceptions):

You can create your own exceptions. Keep the following points in mind when writing
your own exception classes:

 All exceptions must be a child of Throw able.
 If you want to write a checked exception that is automatically enforced by

the Handle or Declare Rule, you need to extend the Exception class.
 If you want to write a runtime exception, you need to extend the

RuntimeException class.

You just need to extend(inherit) the Exception class to create your own
Exception class. These are considered to be checked exceptions. The following
InsufficientFundsException class is a user-defined exception that extends the
Exception class, making it a checked exception. An exception class is like any
other class, containing useful fields and methods.

Example of user defined exception in java:
class MyException extends Exception
{
}

// File Name InsufficientFundsException.java
import java.io.*;

public class InsufficientFundsException extends Exception
{
 private double amount;
 public InsufficientFundsException(double amount)
 {
 this.amount = amount;
 }
 public double getAmount()
 {
 return amount;
 }
}

The fundamentals of exception handling
 The "normal" code is put in try block. It means that we "try to execute code" in the try

block.

 If the system succeeds to run the code, everything is fine (execution goes in order from
top to down, catch blocks are skipped).

 If something goes wrong when code of try block is executed, this code throws an

exception object and stops executing the code of try block further.

 Another part of the code (the error handling part) catches the exception (object) and
make necessary actions needed in that error situation. Execution continues with the next
statement following the catch blocks

 The exception object can contain information about the exception, so that the error

handling part of the program can examine the reason and make appropriate actions.

Summary of Exception Handling

 A good programs does not produce unexpected results.
 I t is always a good practice to check for potential problem spots in programs and guard

against program failures.
 Exceptions are mainly used to deal with runtime errors.
 Exceptions also aid in debugging programs.

 Exception handling mechanisms can effectively used to locate the type and place of
errors.

Order of Implementation
Classes need to be implemented (and ideally, fully unit tested) from least-coupled to most-
coupled (see Figure). For example, possible first classes to implement are either Payment or
ProductDescription; next are classes only dependent on the prior implementations—
ProductCatalog or SalesLineItem.

Fig: Possible order of class implementation and testing.

Implementation Code For Case Study
This section presents a sample domain object layer program solution in Java for this iteration.
The code generation is largely derived from the design class diagrams and interaction diagrams
defined in the design work, based on the principles of mapping designs to code as previously
explored.

Introduction to the NextGen POS Program Solution

Class Payment
// all classes are probably in a package named
// something like:
package com.foo.nextgen.domain;
public class Payment
{
private Money amount;
public Payment(Money cashTendered){ amount = cashTendered; }
public Money getAmount() { return amount; }
}

Class ProductCatalog
public class ProductCatalog
{
private Map<ItemID, ProductDescription>
descriptions = new HashMap()<ItemID, ProductDescription>;
public ProductCatalog()
{
// sample data
ItemID id1 = new ItemID(100);
ItemID id2 = new ItemID(200);
Money price = new Money(3);
ProductDescription desc;
desc = new ProductDescription(id1, price, "product 1");
descriptions.put(id1, desc);
desc = new ProductDescription(id2, price, "product 2");
descriptions.put(id2, desc);
}
public ProductDescription getProductDescription(ItemID id)
{
return descriptions.get(id);
}
}
Class Register
public class Register
{
private ProductCatalog catalog;
private Sale currentSale;
public Register(ProductCatalog catalog)
{
this.catalog = catalog;
}
public void endSale()

{
currentSale.becomeComplete();
}
public void enterItem(ItemID id, int quantity)
{
ProductDescription desc = catalog.getProductDescription(id);
currentSale.makeLineItem(desc, quantity);
}
public void makeNewSale()
{
currentSale = new Sale();
}
public void makePayment(Money cashTendered)
{
currentSale.makePayment(cashTendered);
}
}
Class ProductDescription
public class ProductDescription
{
private ItemID id;
private Money price;
private String description;
public ProductDescription(ItemID id, Money price, String description)
{
this.id = id;
this.price = price;
this.description = description;
}
public ItemID getItemID() { return id; }
public Money getPrice() { return price; }
public String getDescription() { return description; }
}
Class Sale
public class Sale
{
private List<SalesLineItem> lineItems =
new ArrayList()<SalesLineItem>;
private Date date = new Date();
private boolean isComplete = false;
private Payment payment;
public Money getBalance()
{
return payment.getAmount().minus(getTotal());
}
public void becomeComplete() { isComplete = true; }

public boolean isComplete() { return isComplete; }
public void makeLineItem
(ProductDescription desc, int quantity)
{
lineItems.add(new SalesLineItem(desc, quantity));
}
public Money getTotal()
{
Money total = new Money();
Money subtotal = null;
for (SalesLineItem lineItem : lineItems)
{
subtotal = lineItem.getSubtotal();
total.add(subtotal);
}
return total;
}
public void makePayment(Money cashTendered)
{
payment = new Payment(cashTendered);
}
}
Class SalesLineItem
public class SalesLineItem
{
private int quantity;
private ProductDescription description;
public SalesLineItem (ProductDescription desc, int quantity)
{
this.description = desc;
this.quantity = quantity;
}
public Money getSubtotal()
{
return description.getPrice().times(quantity);
}
}
Class Store
public class Store
{

private ProductCatalog catalog = new ProductCatalog();

private Register register = new Register(catalog);

public Register getRegister() { return register; }

}

Introduction to the Monopoly Program Solution

This section presents a sample domain layer of classes in Java for this iteration. Iteration-2 will
lead to refinements and improvements in this code and design. Comments excluded on purpose,
in the interest of brevity, as the code is simple.

Class Square
// all classes are probably in a package named
// something like:
package com.foo.monopoly.domain;
public class Square
{
private String name;
private Square nextSquare;
private int index;
public Square(String name, int index)
{
this.name = name;
this.index = index;
}
public void setNextSquare(Square s)
{
nextSquare = s;
}
public Square getNextSquare()
{
return nextSquare;
}
public String getName()
{
return name;
}
public int getIndex()
{
return index;
}
}
Class Piece
public class Piece
{
private Square location;
public Piece(Square location)
{
this.location = location;
}

public Square getLocation()
{
return location;
}
public void setLocation(Square location)
{
this.location = location;
}
}
Class Die
public class Die
{
public static final int MAX = 6;
private int faceValue;
public Die()
{
roll();
}
public void roll()
{
faceValue = (int) ((Math.random() * MAX) + 1);
}
public int getFaceValue()
{
return faceValue;
}
}
Class Board
public class Board
{
private static final int SIZE = 40;
private List squares = new ArrayList(SIZE);
public Board()
{
buildSquares();
linkSquares();
}
public Square getSquare(Square start, int distance)
{
int endIndex = (start.getIndex() + distance) % SIZE;
return (Square) squares.get(endIndex);
}
public Square getStartSquare()
{
return (Square) squares.get(0);
}

private void buildSquares()
{
for (int i = 1; i <= SIZE; i++)
{
build(i);
}
}
private void build(int i)
{
Square s = new Square("Square " + i, i - 1);
squares.add(s);
}
private void linkSquares()
{
for (int i = 0; i < (SIZE - 1); i++)
{
link(i);
}
Square first = (Square) squares.get(0);
Square last = (Square) squares.get(SIZE - 1);
last.setNextSquare(first);
}
private void link(int i)
{
Square current = (Square) squares.get(i);
Square next = (Square) squares.get(i + 1);
current.setNextSquare(next);
}
}
Class Player
public class Player
{
private String name;
private Piece piece;
private Board board;
private Die[] dice;
public Player(String name, Die[] dice, Board board)
{
this.name = name;
this.dice = dice;
this.board = board;
piece = new Piece(board.getStartSquare());
}
public void takeTurn()
{
// roll dice

int rollTotal = 0;
for (int i = 0; i < dice.length; i++)
{
dice[i].roll();
rollTotal += dice[i].getFaceValue();
}
Square newLoc = board.getSquare(piece.getLocation(), rollTotal);
piece.setLocation(newLoc);
}
public Square getLocation()
{
return piece.getLocation();
}
public String getName()
{
return name;
}
}

Class MonopolyGame

public class MonopolyGame
{
private static final int ROUNDS_TOTAL = 20;
private static final int PLAYERS_TOTAL = 2;
private List players = new ArrayList(PLAYERS_TOTAL);
private Board board = new Board();
private Die[] dice = { new Die(), new Die() };
public MonopolyGame()
{
Player p;
p = new Player("Horse", dice, board);
players.add(p);
p = new Player("Car", dice, board);
players.add(p);
}
public void playGame()
{
for (int i = 0; i < ROUNDS_TOTAL; i++)
{
playRound();
}
}
public List getPlayers()
{
return players;

}
private void playRound()
{
for (Iterator iter = players.iterator(); iter.hasNext();)
{
Player player = (Player) iter.next();
player.takeTurn();
}
}
}

Software Crisis

It was in late 1960’s

 Many software projects failed.
 Many software projects late, over budget, providing unreliable software that is

expensive to maintain.
 Many software projects produced software which did not satisfy the requirements of

the customer.
 Complexities of software projects increased as hardware capability increased.
 Larger software system is more difficult and expensive to maintain.
 Demand of new software increased faster than ability to generate new software.

All the above attributes of what was called a ‘Software Crisis’. So the term ‘Software
Engineering’ first introduced at a conference in late 1960’s to discuss the software crisis.

Software Quality Metrics for Object-Oriented Environments

Object-oriented software development requires a different approach from traditional
development methods, including the metrics used to evaluate the software. With object-oriented
analysis and design methods gaining popularity, it is time to investigate object-oriented quality
metrics. Since metrics should never be developed in a void, this article first looks at criteria for
the metrics, then discusses specific metrics for object-oriented development, including traditional
metrics and metrics developed to measure specific object-oriented structures.

Object-oriented design and development are popular concepts in today's software development
environment--some even herald them as the "silver bullet" for solving software problems.
Although there is no silver bullet, object-oriented (OO) development has proved its value for

systems that must be maintained and modified. OO software development requires a different
approach from more traditional functional decomposition and data flow development methods,
including the metrics used to evaluate OO software.

 The concepts of software metrics are well established, and many metrics relating to product
quality have been developed and used. With OO analysis and design methods gaining popularity,
it is time to start investigating OO metrics with respect to software quality. In this article, we
answer the following questions:

 What concepts and structures in OO design affect the quality of the software?

 Can traditional metrics measure the critical OO structures?

 If so, are the threshold values for the metrics the same for OO designs as for functional or data
designs?

 Which of the many new metrics found in the literature are useful to measure the critical
concepts of OO structures?

 Metric Evaluation Criteria

Traditional functional decomposition metrics and data analysis design metrics measure the
design structure or data structure independently. However, OO metrics must be able to treat
function and data as a combined, integrated object . To evaluate a metric's usefulness as a
quantitative measure of software quality, it must be based on the measurement of a software
quality attribute. The metrics selected, however, are useful in a wide range of models. The OO
metric criteria, therefore, are to be used to evaluate the following attributes:

 Efficiency -- are the constructs efficiently designed?

 Complexity -- could the constructs be used more effectively to decrease the architectural
complexity?

 Understandability -- does the design increase the psychological complexity?

 Reusability -- does the design quality support possible reuse?

 Testability and maintainability -- does the structure support ease of testing and changes?

 Whether a metric is traditional or new, it must effectively measure one or more of these
attributes. As each metric is presented, we will briefly discuss its applicability.

 The Software Assurance Technology Center's (SATC) approach was to select OO metrics that
apply to the primary, critical constructs of OO design. The suggested metrics are supported by
most literature and are now found in some OO tools. The metrics evaluate the OO concepts:
methods, classes, cohesion, coupling, and inheritance. The metrics focus on internal object

structure, external measures of the interactions among entities, measures of the efficiency of an
algorithm and the use of machine resources, and the psychological measures that affect a
programmer's ability to create, comprehend, modify, and maintain software.

 We support the use of three traditional metrics and present six additional metrics specifically
for OO systems. The SATC has found that there is considerable disagreement in the field about
software quality metrics for OO systems , with some who contend that traditional metrics are
inappropriate for OO systems. However, there are valid reasons to apply traditional metrics when
it can be done. The traditional metrics have been widely used, are well understood by researchers
and practitioners, and their relationships to software quality attributes have been validated.
Preceding each metric, a brief description of the OO structure is given. Each metric is then
described, interpretation guidelines given, and the applicable quality attributes listed.

 Traditional Metrics

Methods

In an OO system, traditional metrics are generally applied to the methods that comprise the
operations of a class. A method is a component of an object that operates on data in response to a
message and is defined as part of the declaration of a class. It is an operation upon an object and
is defined in the class declaration. Methods reflect how a problem is broken into segments and
the capabilities other classes expect of a given class.

 Metric 1: Cyclomatic Complexity. Cyclomatic complexity is used to evaluate the
complexity of an algorithm in a method. Low cyclomatic complexity methods are generally
better, although some are low because decisions are deferred through message passing, not
because the method is not complex. Because of inheritance, cyclomatic complexity cannot be
used to measure the complexity of a class, but the cyclomatic complexity of individual methods
can be combined with other measures to evaluate the complexity of the class.

 Generally, the cyclomatic complexity for a method should be below 10, which indicates that
decisions are deferred through message passing. Although this metric is specifically applicable to
evaluation of the complexity quality attribute, it also is related to all the other attributes

 Metric 2: Size. Size of a method is used to evaluate the ease of understandability of the code
by developers and maintainers. Size can be measured in a variety of ways. These include
counting all physical lines of code, the number of statements, and the number of blank lines.
Thresholds for evaluating the size measures vary, depending on the coding language used and
the complexity of the method. However, because size affects ease of understanding, large-size

routines always pose a higher risk in the attributes of understandability, reusability, and
maintainability

 Metric 3: Comment Percentage. The line counts done to compute size metrics can be
expanded to include a count of the number of comments, both on line (with code) and stand-
alone. The comment percentage is calculated by the total number of comments divided by the
total lines of code less the number of blank lines. The SATC found that a comment percentage of
about 30 percent is most effective. Because comments help developers and maintainers, this
metric is used to evaluate the attributes of understandability, reusability, and maintainability

 OO-Specific Metrics

As discussed, many different metrics have been proposed for OO systems. The OO metrics
chosen by the SATC measure principle structures that, if improperly designed, negatively affect
the design and code quality attributes.

 The selected OO metrics are primarily applied to the concepts of classes, coupling, and
inheritance. Multiple definitions are given for some of the OO metrics discussed here, because
researchers and practitioners have not reached a common definition or counting method. In some
cases, the counting method for a metric is determined by the software analysis package used to
collect the metrics.

Classes

A class is a template from which objects can be created. This set of objects shares a common
structure and a common behavior manifested by the set of methods. Three class metrics
described here measure the complexity of a class using the class's methods, messages, and
cohesion.

 Metric 4: Weighted Methods per Class (WMC). The WMC is a count of the methods
implemented within a class or the sum of the complexities of the methods (method complexity is
measured by cyclomatic complexity). The second measurement is difficult to implement because
not all methods are accessible within the class hierarchy because of inheritance.

 The number of methods and the complexity of the methods involved is a predictor of how
much time and effort is required to develop and maintain the class. The larger the number of
methods in a class, the greater the potential impact on children, since children inherit all of the
methods defined in a class. Classes with large numbers of methods are likely to be more
application specific, limiting the possibility of reuse. This metric measures understandability,
reusability, and maintainability

Message

A message is a request that an object makes of another object to perform an operation. The
operation executed as a result of receiving a message is called a method. The next metric looks at
methods and messages within a class.

 Metric 5: Response for a Class (RFC). The RFC is the cardinality of the set of all methods
that can be invoked in response to a message sent to an object of the class or by some method in
the class. This includes all methods accessible within the class hierarchy. This metric uses a
number of methods to review a combination of a class's complexity and the amount of
communication with other classes. The larger the number of methods that can be invoked from a
class through messages, the greater the complexity of the class.

 If a large number of methods can be invoked in response to a message, testing and debugging
the class requires a greater understanding on the part of the tester. A worst-case value for
possible responses assists in the appropriate allocation of testing time. This metric evaluates
understandability, maintainability, and testability

Cohesion

Cohesion is the degree to which methods within a class are related to one another and work
together to provide well-bounded behavior. Effective OO designs maximize cohesion because
they promote encapsulation.

 Metric 6: Lack of Cohesion of Methods (LCOM). LCOM uses data input variables or
attributes (structural properties of classes) to measure the degree of similarity between methods.
Any measure of method separateness helps identify flaws in the design of classes. There are at
least two ways to measure cohesion:

 For each data field in a class, calculate the percentage of methods that use that data field.
Average the percentages, then subtract from 100 percent. Lower percentages indicate greater
data and method cohesion within the class.

 Methods are more similar if they operate on the same attributes. Count the disjoint sets produced
from the intersection of the sets of attributes used by the methods.

 High cohesion indicates good class subdivision. Lack of cohesion or low cohesion increases
complexity, thereby increasing the likelihood of errors during development. Classes with low
cohesion could probably be subdivided into two or more subclasses with increased cohesion.
This metric evaluates efficiency and reusability

Coupling

Coupling is a measure of the strength of association established by a connection from one entity
to another. Classes (objects) are coupled three ways:

 When a message is passed between objects, the objects are said to be coupled.

 Classes are coupled when methods declared in one class use methods or attributes from the other
classes.

 Inheritance introduces significant tight coupling between superclasses and their subclasses.

 Since good OO design requires a balance between coupling and inheritance, coupling
measures focus on non-inheritance coupling. The next OO metric measures coupling strength.

 Metric 7: Coupling Between Object Classes (CBO). CBO is a count of the number of other
classes to which a class is coupled. It is measured by counting the number of distinct
noninheritance-related class hierarchies on which a class depends. Excessive coupling is
detrimental to modular design and prevents reuse. The more independent a class, the easier it is
to reuse in another application. The larger the number of couples, the higher the sensitivity to
changes in other parts of the design; maintenance is therefore more difficult. Strong coupling
complicates a system, since a module is harder to understand, change, or correct by itself if it is
interrelated with other modules. Complexity can be reduced by designing systems with the
weakest possible coupling between modules. This improves modularity and promotes
encapsulation. CBO evaluates efficiency and reusability.

 Inheritance

Another design abstraction in OO systems is the use of inheritance. Inheritance is a type of
relationship among classes that enables programmers to reuse previously defined objects,
including variables and operators. Inheritance decreases complexity by reducing the number of
operations and operators, but this abstraction of objects can make maintenance and design
difficult. The two metrics used to measure the amount of inheritance are the depth and breadth of
the inheritance hierarchy.

 Metric 8: Depth of Inheritance Tree (DIT). The depth of a class within the inheritance
hierarchy is the maximum length from the class node to the root of the tree, measured by the
number of ancestor classes. The deeper a class within the hierarchy, the greater the number of
methods it is likely to inherit, making it more complex to predict its behavior. Deeper trees
constitute greater design complexity, since more methods and classes are involved, but the
greater the potential for reuse of inherited methods. A support metric for DIT is the number of
methods inherited. This metric primarily evaluates efficiency and reuse but also relates to
understandability and testability

 Metric 9: Number of Children (NOC). The number of children is the number of immediate
subclasses subordinate to a class in the hierarchy. It is an indicator of the potential influence a
class can have on the design and on the system. The greater the number of children, the greater
the likelihood of improper parent abstraction, and it may be an indication of subclassing misuse.

But the greater the number of children, the greater the reusability, since inheritance is a form of
reuse. If a class has a large number of children, it may require more testing of the methods of that
class, thus increase the testing time. NOC, therefore, primarily evaluates efficiency, reusability,
and testability

