
NoSQL

By Dinesh Amatya

NoSQL

NoSQL

There is no full agreement but nowadays we can summarize NoSQL definition as
follows

 Next generation databases addressing some of the points:
– non relational

– schema-free

– no Join

– distributed

– horizontally scalable with easy replication support

– eventually consistent

– open source

NoSQL

NoSQL databases first started out as in-house
solutions to real problems:

– Amazon’s Dynamo

– Google’s BigTable

– LinkedIn’s Voldemort

– Facebook’s Cassandra

– Yahoo!’s PNUTS

NoSQL

The listed companies didn’t start off by rejecting relational
technologies. They tried them and found that they didn’t meet

their requirements:
– Huge concurrent transactions volume

– Expectations of low-latency access to massive datasets

– Expectations of nearly perfect service availability while operating in
an unreliable environment

NoSQL

They tried the traditional approach
– Adding more HW

– Upgrading to faster HW as available

...and when it didn’t work they tried to scale existing relational solutions:

– Simplifying DB schema

– De-normalization

– Introducing numerous query caching layers

– Separating read-only from write-dedicated replicas

– Data partitioning

CAP Theorem

Formulated in 2000 by Eric Brewer
 It is impossible for a distributed computer system to simultaneously provide

all three of the following guarantees:
– Consistency (all nodes always see the same data at the same time)

– Availability (every request always receives a response about whether it
was successful or failed)

– Partition Tolerance (the system continues to operate despite arbitrary
message loss or failure of part of the system)

CAP Theorem

CAP Theorem And NoSQL

Most NoSQL database system architectures favor
partition tolerance and availability over strong
consistency

– Eventual Consistency: inconsistencies between
data held by different nodes are transitory.
Eventually all nodes in the system will receive the
latest consistent updates.

RDBMS vs NoSQL

 RDBMSs enforce global ACID properties thus allowing multiple arbitrary
operations in the context of a single transaction.

 NoSQL databases enforce only local BASE properties
– Basically Available (data is always perceived as available by the user)

– Soft State (data at some node could change without any explicit user
intervention. This follows from eventual consistency)

– Eventually Consistent (NoSQL guarantees consistency only at some
undefined future time)

NoSQL Taxonomy

● Key/Value Store
- Amazon’s Dynamo, LinkedIn’s Voldemort, MemCached, Redis . . .

● Document Store
 - MongoDB, CouchDB, . . .

● Column Store
 - Google’s Bigtable, Apache’s HBase, Facebook’s Cassandra, . . .

● Graph Store
- Neo4J, InfiniteGraph, . . .

RDMS Data

`

Key/Value Store

● Global collection of Key/Value pairs. Every item in the

database is stored as an attribute name (key) together with
its associated value

● Every key associated to exactly one value. No duplicates

● The value is simply a binary object. The DB does not
associate any structure to stored values

● Designed to handle massive load of data

● Inspired by Distributed Hash Tables

Key/Value Store

JSON

● Stands for JavaScript Object Notation

● Syntax for storing and exchanging text information

● Uses JavaScript syntax but it is language and platform
independent

● Much like XML but smaller, faster and easier to parse than
XML (and human readable)

● Basic data types(Number, String, Boolean) and supports
data structures as objects and arrays

JSON

Document Store

● Same as Key/Value Store but pair each key with a arbitrarily complex
data structure known as a document.

● Documents may contain many different key-value pairs or key-array
pairs or even nested documents (like a JSON object).

● Data in documents can be understood by the DB: querying data is
possible by other means than just a key (selection and projection over
results are possible).

Document Store

{ "firstname": "Martin",
"likes": ["Biking","Photography"],
 "lastcity": "Boston",
 "lastVisited":
}

{
 "firstname": "Pramod",
 "citiesvisited": ["Chicago", "London", "Pune", "Bangalore"],
 "addresses": [
 { "state": "AK",
 "city": "DILLINGHAM",
 "type": "R"
 },
 { "state": "MH",
 "city": "PUNE",
 "type": "R" }
],
 "lastcity": "Chicago"
}

Column Store

● ”A sparse, distributed multi-dimensional sorted map”

● Store rows of data in similar fashion as typical RDBMSs do

● Rows are contained within a Column Families. Column Families can be
considered as tables in RDBMSes

● Unlike table in RDBMSes, a Column Family can have different columns
for each row it contains

● Each row is identified by a key that is unique in the context of a single
Column Family. The same key can be however re-used within other
Column Families, so it is possible to store unrelated data about the same
key in different Column Families

Column Store

● Usually data from the same Column Family are stored contiguously
on disk (and consequently on the same node of the network)

● Each column is simply a key/value couple

●

●

●

●

Column Store

Graph Store

● Use graph structures with nodes, edges and
properties to store pieces of data and relations
between them

● Every element contains direct pointers to its adjacent
elements.

● Computing answers to queries over the DB
corresponds to finding suitable paths on the graph
structure

Graph Store

Graph Store

References

 http://db.cs.berkeley.edu/cs286/papers/errors-cacmblog2010.pdf

 http://www.quora.com/Can-someone-provide-an-intuitive-proof-explanation-of-CAP-theorem

 http://www.slideshare.net/yoavaa/introduction-to-the-cap-theorem

 http://netwovenblogs.com/2013/10/10/hbase-overview-of-architecture-and-data-model/

 NoSQL Distilled A Brief Guide to the Emerging World of Polyglot

 NoSQL For Dummies by Adam Fowler

 http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

 http://databases.about.com/od/otherdatabases/a/Abandoning-Acid-In-Favor-Of-Base.htm

http://db.cs.berkeley.edu/cs286/papers/errors-cacmblog2010.pdf
http://www.quora.com/Can-someone-provide-an-intuitive-proof-explanation-of-CAP-theorem
http://www.slideshare.net/yoavaa/introduction-to-the-cap-theorem
http://netwovenblogs.com/2013/10/10/hbase-overview-of-architecture-and-data-model/
http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

	Slide 1
	Example Bullet Point slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Examples of default styles

