
Google File System

By Dinesh Amatya

Google File System (GFS)
Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung

 designed and implemented to meet rapidly growing
demand of Google's data processing need

 a scalable distributed file system for large distributed
data-intensive applications

 provides fault tolerance while running on
inexpensive commodity hardware

 Performance , Reliability , Availability , scalability

GFS Design Overview:
Assumptions

 Component failure is norm : System components such as disks, machines and
links are ought to fail. So, the system should be able to detect and recover from
the failure by constantly monitoring

 File are huge : System stores millions of files most of which are multi-GB. So,
large files must be stored efficiently.

 Most modifications are appends: Random writes are practically non-existent.
Once written, files are seldom modified again and are read sequentially.

 Two types of read: Large streaming reads, Small random reads

 must efficiently implement well-defined semantics for multiple clients that
concurrently append to the same file

 Sustained bandwidth more important than low latency

GFS Design Overview: Interface

 Provides familiar file system interface
– Create, Delete, Open, Close, Read, Write

 Files are organized hierarchically in directories and identified by
pathnames

 GFS has snapshot and record append operations

 Snapshot creates a copy of a file or a directory tree at low cost

 Record append allows multiple clients to append data to the same file
concurrently while guaranteeing the atomicity of each individual
client’s append

–

–

GFS Design Overview: Architecture

GFS Design Overview: Architecture

→ Single Master

→ Multiple Chunkserver

→ Multiple Clients

→ Files are divided into Chunks
→ Chunk handle

→ Master

- maintains Metadata (namespace, access control information,mapping from file to
 chunks, current location of chunks)

- controls activities such as chunk lease management, garbage collection of

 orphaned chunks, and chunk migration between chunkservers.

- communicates with each chunkserver in HeartBeat messages to give it

 instructions and collect its state

GFS Design Overview: Architecture

→ GFS client code linked into each application implements the
file system API and communicates with the master and
chunkservers to read or write data on behalf of the application

→Clients interact with the master for metadata operations, but
all data-bearing communication goes directly to the
chunkservers

→ Neither the client nor the chunkserver caches file data

GFS Design Overview:
Single Master

→ vastly simplifies the design

→ enables the master to make sophisticated chunk placement
and replication decisions using global knowledge

→ However, one must minimize its involvement in reads and
writes so that it does not become a bottleneck

→ Clients never read and write file data through the master.
Instead, a client asks the master which chunkservers it should
contact. It caches this information for a limited time and interacts
with the chunkservers directly for many subsequent operations.

GFS Design Overview: Chunk Size

→ 64 MB – much larger than ordinary,

Why ?

- Advantages

 . Reduce client-master interaction

 . Reduce network overhead

 . Reduce the size of metadata

- Disadvantage

 . Hot spots – many clients accessing a 1-chunk file

GFS Design Overview: Metadata

→ Three major types

- File and chunk namespaces

- File to chunk mapping

- Location of chunk replicas

→ All kept in memory

- Fast

- Quick global scan (Garbage collection , Reorganization)

- 64 bytes per 64 MB of data

GFS Design Overview: Metadata

→ Chunk location

- obtained in master's memory by polling chunkservers at

 startup

- updated using heartbeat messages

→ Operation Log

- contains historical record of metadata changes

- only persistent record of metadata

- master recovers its file system by replaying this log

- is critical, hence replicated

GFS Design Overview:
Consistency Model

→ A file region can be:

+ consistent: if clients see same data regardless of which replica they read from

+ defined: consistent, when a mutation succeeds without interference

 from concurrent writers

+ undifined :Concurrent successful

 Mutations

 + inconsistent: failed mutation

GFS Design Overview:
Consistency Model

→ After a sequence of successful mutations, the mutated file region is

 guaranteed to be defined

→ GFS achieves this by

- applying mutations to a chunk in the same order on all its replicas

 - using chunk version numbers to detect any replica that has become stale

 because it has missed mutations while its chunkserver was down

GFS Design Overview:
System Interaction

→ Leases and mutation order

→ Data flow

→ Atomic record appends

→ Snapshot

System Interaction : Lease

→ Mutation: operation that changes the contents or metadata

→ Leases to maintain a consistent mutation order across replicas

→ Designed to minimize management overhead of master

→ Master grants lease to one replica which is called primary

→ Primary picks serial order of mutation and all replicas follow

→ 60 second timeout, can be extended

→ can be revoked

System Interaction : Data Flow

→ Decouples data flow and control flow

→ Control Flow

- Master → primary → secondary

→ Data Flow

- Carefully picked chain of chunk servers

 . Forward to the closest first

 . Pipelining to exploit full-duplex links

System Interaction :
Data Flow

Fig: Write Control and Data Flow

System Interaction :
Atomic Record Appends

→ Decouples data flow and control flow

→ Control Flow

- Master → primary → secondary

→ Data Flow

- Carefully picked chain of chunk servers

 . Forward to the closest first

 . Pipelining to exploit full-duplex links

→ Master grants lease to one replica which is called primary

→ Primary picks serial order of mutation and all replicas follow

→ 60 second timeout, can be extended

→ can be revoked

System Interaction :
Snapshot

→ Makes a copy of file of directory tree almost
instantaneously

→ Steps

- Revokes lease

- Logs operation to disk

GFS Design Overview:
Master Operation

→ executes all namespace operations

→ manages chunk replicas throughout the system

→ makes placement decisions, create new chunks

→ ensures chunks are fully replicated

→ balances load across all chunkservers

→ reclaim unused storage

Master Operation:
Namespace management and locking

→ logically represents its namespace as a lookup table mapping

full pathnames to metadata

→ each node in namespace tree has a read write lock

→ to access /d1/d2/leaf , need to lock /d1 , /d1/d2 and /d1/d2/leaf

→ can modify a directory concurrently. Each thread aquires

- a read lock on directory

- a write lock on a file

Master Operation:
Replica Placement

→hundreds of chunkservers spread across many
racks

→two purposes: maximize data reliability and
availability, and maximize network bandwidth utilization

→ spread chunk replicas across racks

→ tradeoff ?

Master Operation:
Creation, Re-replication, Re-balancing

→factors considered for creating replicas

- place new replicas on chunkserver with below-average disk

 utilization

- limit the number of “recent” creation on chunkservers

- spread replicas of chunk across racks

→ re-replication priority

- chunk that is blocking client progress

- chunks for live files as opposed to chunks that belongs to recently

 deleted files

- how far it is from its replication goal

Master Operation:
Creation, Re-replication, Re-balancing

→master picks highest priority chunk and instructs some
chunkserver to copy the chunk data directly from an existing
valid replica

→examines the current replica distribution and moves replicas
for better disk space and load balancing

→ remove replicas on chunkservers with below-average free
space

→gradually fills up a new chunkserver rather than instantly
swamping it with new chunks

Master Operation:
Garbage Collection

→GFS does not reclaim the available physical space after
deletion of a file

→does so lazily during regular garbage collection

→ file is renamed to a hidden name

→ can still be read under the new, special name and can
be undeleted by renaming

→ removed during master's regular scan if such file existed
for more than 3 days

Master Operation:
Stale Replica Detection

→replicas may become stale if a chunkserver fails and
misses mutations to the chunk while it is down

→master maintains a chunk version number to
distinguish between up-to-date and stale replicas

GFS Design Overview:
Fault Tolerance

→ greatest challenges in designing the system is
dealing with frequent component failures

Fault Tolerance:High Availability

→ Fast Recovery

→ Chunk Replication

→ Master Replication

Fault Tolerance:Data Integrity

→ uses checksumming to detect corruption of stored
data

→ chunk is broken up into 64KB blocks with
corresponding 32 bit checksum

→ chunkserver verifies the checksum before returning
data

References

 http://google-file-system.wikispaces.asu.edu/
 http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
 http://queue.acm.org/detail.cfm?id=1594206
 http://stackoverflow.com/questions/27864495/google-file-system-consistency-model
 http://pages.cs.wisc.edu/~thanhdo/qual-notes/fs/fs4-gfs.txt

http://google-file-system.wikispaces.asu.edu/
http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
http://queue.acm.org/detail.cfm?id=1594206
http://stackoverflow.com/questions/27864495/google-file-system-consistency-model

	Slide 1
	Example Bullet Point slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Examples of default styles

