Natural Language Processing

- Language is means of Communication for humans. By studying language, we come to understand more about the world.
- If we can succeed at building computational mode of language, we will have a powerful tool for communicating about the world.
- We look at how we can exploit knowledge about the world, in combination with linguistic facts, to build computational natural language systems.
- Natural Language Processing (NLP) is the process of computer analysis of input provided in a human language (natural language), and conversion of this input into a useful form of representation.
- NLP is one of field of AI that processes or analyzes written or spoken language.
- NLP involve processing of speech, grammar and meaning.
- NLP is composed of two part: NLU (Natural Language Understanding) and NLG (Natural Language generation).
- Understanding any language requires detailed knowledge of that language.

NLP Steps/ Processes

Input/Source

- The input of a NLP system can be written text or speech.
- Quality of input decides the possible errors in language processing that is high quality input leads to correct language understanding.

Segmentation

- The text inputs are divided in segments (Chunks) and the segments are analyzed. Each such chunk is called frames.

Syntactic Analysis

- Syntactic analysis takes an input sentence and produces a representation of its grammatical structure.
- A grammar describes the valid parts of speech of a language and how to combine them into phrases.
- The grammar of English is nearly context free.

Grammar: A computer grammar specifies which sentences are in a language and their parse trees. A parse tree is a hierarchical structure that shows how the grammar applies to the input. Each level of the tree corresponds to the application of one grammar rule.

Syntax

- 1. sentence ↔ noun_phrase verb_phrase
- 2. noun phrase \leftrightarrow noun
- 3. noun_phrase \leftrightarrow article noun
- 4. verb_phrase \leftrightarrow verb
- 5. verb_phrase \leftrightarrow verb noun_phrase
- 6. article \leftrightarrow a
- 7. article \leftrightarrow the
- 8. noun \leftrightarrow man
- 9. noun \leftrightarrow dog
- 10. verb \leftrightarrow likes
- 11. verb \leftrightarrow bites

Parse tree

Semantic Analysis

- Semantic analysis is a process of converting the syntactic representations into a meaning representation.
- This involves the following tasks:

- Word sense determination
- Sentence level analysis

Word sense: Words have different meanings in different contexts.

Example:*Mary had a bat in her office*.

bat = `a baseball thing'

bat = `a flying mammal'

Sentence Level Meaning

Once the words are understood, the sentence must be assigned some meaning Examples:

- She saw her duck.
 - I saw a man with a telescope.

Non-examples: Colorless green ideas sleep furiously - >This would be rejected semantically as *colorless green* would make no sense

Pragmatic Analysis

- Pragmatics comprises aspects of meaning that depend upon the context or upon facts about real world.
- These aspects include:
- Pronouns and referring expressions
- Logical inferences, that can be drawn from the meanings of a set of propositions.
- Discourse structure: the meaning of a collection of sentences taken together.

Examples

- Jack fell. Jill brought him a band-aid. Jack got hurt and Jill wanted to help.
- We got seven letters today

We got only seven letters (and not eight).

• Understanding toothpaste directions.

For best results, squeeze tube from the bottom and flatten as you go up.

- The tube has an opening at only one end.
- The tube can be squeezed,
- The instructee wants to use the paste.
- The tube can be emptied only through its mouth.
- Lexicon or dictionary
- Morphological Analysis system

NLP AIDS

- To understand or analyze language some aids or tools can be used in NLP

i. Lexicon or Dictionary

- A lexicon defines the words of a language that a system knows about.
- This includes common words and words that are specific to the domain of the application.
- Entries include meanings for each word and its syntactic and morphological behavior.

ii. Morphological Analysis System

- Morphological analysis is the process of recognizing the suffixes and prefixes that have been attached to a word.
- We do this by having a table of affixes and trying to match the input as: prefixes+root+suffixes.
 - For example: adjective + ly -> adverb
 - We may not get a unique result.
 - 0 "-s, -es" can be either a plural noun or a verb
 - 0 "-d, -ed" can be either a past tense or a perfect participle

- Morphological Information

- Transform part of speech
 - 0 green, greenness (adjective, noun)
 - 0 walk, walker (verb, noun)
 - Change features of nouns
 - 0 boat, boats (singular, plural)
- Bill slept , Bill's bed

•

- 0 (subjective case, possessive case)
- Change features of verbs
 - 0 Aspect
 - *I walk. I am walking.* (present, progressive)
 - 0 Tense
 - I walked. I will walk. I had been walking. (past, future, past progressive)
 - 0 Number and person
 - I walk. They walk. (first person singular, third person plural)
- Problems
- doubled consonants (sit, sitting)
- changing y to i (fly, flies)
- abbreviations (CAN0
- naming word (Cook)
- wrong spelled word (Hare instead hair)
- unrecognized words:
 - real words not in the dictionary
 - 0 names, etc that cannot be listed (names, account nos., library call nos)

iii. Syntactic analysis system

- Takes an i/p sentence and produces a representation of its grammatic structure.
- Grammar (mostly context free grammar) and parser are used.

iv. Semantic Analysis System

- Convert the syntactic representation into a meaning representation.
- It involves:
 - Word sense determination
 - Sentence level analysis

• Knowledge Representation

v. Pragmatic Analysis System

- Study how knowledge about the world and language conventions interacts with the literal meaning.
- Depends upon context and facts about real world.
- These aspects includes:
 - Pronouns and referring expressions.
 - Logical interfaces that can be drawn from meaning of a set of propositions.
 - Inference about what the producer of a sentence is trying to do.

Natural Language Analysis Techniques

- Two commonly used techniques used in natural language processing are

i. Keyword analysis or Pattern matching

- Accept the given sentence as input.
- Segment the sentence.
- Identify keywords in each segment.
- If keyword is present
 - If only one keyword is present, give suitable reply as of keyword
 - If more the on keywords are present, prioritize them and give suitable reply as of keyword
- If no keyword present in the segment , give a random reply.

ii. Syntactic driven parsing technique

- Words can fit together higher level units such as phrases, clauses and sentences.
- Interpretations of larger groups of words are built up out of the interpretation of their syntactic constituent words or phrases.
- Interpretation i/p done as a whole.
- Obtained by application of grammar that determines what sentences are legal in the language that is being parsed.

NLP Problems

- **1.** The same expression means different things in different context.
 - Where's the water? (Chemistry lab? Must be pure)
 - Where's the water? (Thirsty? Must be drinking water)
 - Where's the water? (Leaky roof? It can be dirty)
- **2.** No natural language program can be complete because of new words, expression, and meaning can be generated quite freely.
 - I'll fax it to you
- **3.** There are lots of ways to say the same thing.
 - Ram was born on October 11.
 - Ram's birthday is October 11.
- **4.** Sentence and phrases might have hidden meanings
 - "Out of sight, out of mind"-> " invisible idiot"
 - "The spirit was willing but the flesh was weak" -> " the vodka was good, but the meat was bad"

- **5.** Problem due to syntax and semantics
- **6.** Problem due to extensive use of pronouns. (semantic issue)
 - Eg. Ravi went to the supermarket. He found his favorite brand of coffee in rack. He paid for it and left.
 - It denotes??
- 7. Use of grammatically incorrect sentence
 - He rice eats. (syntax issue)
- 8. Use of conjunctions to avoid repetition of phrases cause problem in NLP
 - Eg. Ram and Hari went to restaurant. While Ram had a cup of coffee, Hari had tea.
 - Hari had a cup of tea.

Introduction to machine Vision

The goal of Machine Vision is to create a model of the real world from images

- A machine vision system recovers useful information about a scene from its two dimensional projections
- The world is three dimensional
- Two dimensional digitized image

Knowledge about the objects (regions) in a scene and projection geometry is required. The information which is recovered differs depending on the application such as Satellite, medical images etc.

The goal of a machine vision system is to compute a meaningful description of the scene (e.g., object)

Machine Vision Stages

- Analog to digital conversion
- Remove noise/patterns, improve contrast
- Find regions (objects) in the image
- Take measurements of objects/relationships

Match the above description with similar description of known objects (models)

Image Processing

Various procedures such as image enhancement (filtering, edge detection, surface detection, computation of depth) Image restoration (remove point/pattern degradation: there exist a mathematical expression of the type of degradation like e.g. Added multiplicative noise, sin/cos pattern degradation etc) takes place.

Classify pixels into groups (regions/objects of interest) sharing common characteristics.

Intensity/Color, texture, motion etc.

Take useful measurements from pixels, regions, spatial relationships, motion etc.

- Grey scale / color intensity values;
- Size, distance;
- Velocity;

Pattern Recognition

Classify an image (region) into one of a number of known classes

- Statistical pattern recognition (the measurements form vectors which are classified into classes);
- Structural pattern recognition (decompose the image into primitive structures).

Digital Image Representation

Image: 2D array of gray level or color values

- Pixel: array element;
- Pixel value: arithmetic value of gray level or color intensity.

Gray level image: f = f(x,y)

- 3D image f=f(x,y,z)

Color image (multi-spectral)

 $f = \{R_{red}(x,y), G_{green}(x,y), B_{blue}(x,y)\}$

Machine Vision Applications

- Robotics
- Medicine
- Remote Sensing
- Meteorology
- Quality inspection

Remote Sensing

Medical Applications

- Take images from high altitudes (from aircrafts, satellites).
- Find ships in the aerial image of the dock.
- Find if new ships have arrived.
- What kind of ships?

- Assist a physician to reach a diagnosis.
- Construct 2D, 3D anatomy models of the human body.
- CG geometric models.
- Analyze the image to extract useful features.

