## **Chapter-5: Structured Knowledge Representation**

- Knowledge Representation is an area of AI whose fundamental goal is to represent knowledge in manner that facilitates inference i.e. drawing conclusion for knowledge.
- It analyzes how to think formally, how to use symbol to represent a domain of discourse along with function that allow inference about the objects.
- Knowledge representation helps to address the problem like:
  - . How do we represent fact about the world?
  - . How do we reason about them?
  - . What representations are appropriate for dealing with the real world?

. How to express knowledge in computer understandable form so that reasoning agent can perform well?



## Approaches to Knowledge Representation

A good system for knowledge representation should have

#### i. Represential Adequacy:

Ability to represent all kind of knowledge that are needed in the domain.

#### ii. Inferential Adequacy:

Ability to manipulate the represential structure in such a way as to derive new structures corresponding to new knowledge inferred from old.

#### iii. Inferential Efficiency:

Ability to incorporate into the knowledge structure additional information that can be used to focus the attention of the inference mechanism in the most efficient directions.

#### iv.

## v. Acquisitional Efficiency:

Ability to acquire new information easily.

#### **Knowledge Types:**

#### a. Simple relational knowledge:

The simplest way to represent declarative facts is as a set of relations of the same sort used in database system.

#### b. Inheritable Knowledge

Structure must be designed to corresponding to the inference mechanism that are desired.

#### c. Inferential Knowledge

Represents knowledge as formal logic. Based on reasoning from facts or from other inferential knowledge. Useless unless there is also as inference procedure that can exploit it.

#### d. Procedural Knowledge (Imperative Knowledge)

Knowledge exercised in the performance of some task and processed by an intelligent agent.

#### **Issues in Knowledge Representation**

- Are any attributes of objects so basic that they have been occurred in almost every problem domain?
- Are there any important relationships that exist among attributes of objects?
- At what level should knowledge be represented?
- How should sets of objects be represented?
- How can relevant part be accessed when they are needed?

#### Knowledge can be viewed as different level.

**i. Knowledge Level:** The most abstract level that describe agent by saying what it knows. Eg: An intelligent taxi might know that the Bagmati bridge connects Thapathali with Kupondole.

- **ii. Logical Level:** The level at which the knowledge is encoded into formal sentences. Eg: Links (Bagmati Bridge, Thapathali, Kupondole)
- **iii. Implementation Level:** Physical Representation of the sentences in the logical level. Eg: Objets, Dam, Piller etc.

#### **Knowledge Model**

- A model is a world in which a sentence is true under a particular interpretation.
- There can be several models at once that have the same interpretation. *Types:*

## **1.** First Order Predicate Logic

- This consists of objects, predicates on objects, connectives and quantifiers
- Predicates are the relations between objects or properties of the objects.
- Connectives and quantifiers allows for universal sentences.
- Relation between objects can be true or false.

## 2. Procedural Representation Model

- This model of knowledge representation encodes facts along with the sequence of operations for manipulation and processing of the facts.
- Expert systems are based on this model.
- It works best when expert follows set of procedures for problem solving. Eg: A medical diagnosis system.

## 3. Relational Representation Model

- Collections of knowledge are stored in tabular form.
- Mostly used in commercial databases, relational databases.
- The information is manipulated with relational calculus using a language such as SQL, Oracle etc.
- This is flexible way to store information but not good for storing complex relationships.
- Problem arises when more than one subject area is attempted.
- A new knowledgebase from scratch has to be built for each area of expertise.

## 4. Hierarchical Representation Model

- Based on inherited knowledge and relationship and shared attributes between objects.

## 5. Semantic Nets

- Semantic network is an alternative to predicate logic as a form of knowledge representation.
- The structure of a semantic net is shown graphically in terms of nodes and the arcs connecting them.
  - . Nodes are sometimes referred to as objects.
  - . Arcs represent the links or edges.
  - . The links are used to express relationships.
- Two types of commonly used links are i. IS-A, and ii.A-KIND-OF
- IS-A means "is an instance of' and refers to a specific member of a class.

- The link A-KIND-OF is used here to relate one class to another .
- Nodes are to represent physical objects, concepts, or situation.
- The idea is that we can store our knowledge in the form of a graph, with nodes representing objects in the world, and arcs representing relationships between those objects.
- Semantic network is a declarative graphic representation that can be used to represent knowledge and support automated systems for reasoning about the knowledge
- For example, the following:
  - Fur Mammal is a Mat sat\_on is a Animal Cat lik Cream is a is\_a Tom Bird caught is\_colourg is owned by Ginger John
- Semantic Network is intended to represent the data:
- Tom is a cat.
- Tom caught a bird.
- Tom is owned by John.
- Tom is ginger in colour.
- Cats like cream.
- The cat sat on the mat.
- A cat is a mammal.
- A bird is an animal.
- All mammals are animals.
- Mammals have fur.
- It is argued that this form of representation is closer to the way human's structure knowledge.

#### Frames (slot and filler structure)

- Frame is a type of schema used in many <u>AI</u> applications including vision and <u>natural</u> <u>language processing</u> that provides a convenient structure for representing.
- Frame is similar to a record structure and corresponding to the fields and values are slots and slot fillers.
- Basically it is a group of slots and fillers that defines a stereotypical object.
- A single frame is not much useful. Frame systems usually have collection of frames connected to each other.
- Value of an attribute of one frame may be another frame.
- Frames are also useful for representing commonsense knowledge.
- While semantic nets are basically a two-dimensional representation of knowledge, frames add a third dimension by allowing nodes to have structures.
- By using frames in the filler slots and inheritance, very powerful knowledge representation systems can be built.
- Frame-based expert systems are very useful for representing causal knowledge because their information is organized by cause and effect.
- Frames are generally designed to represent either generic or specific knowledge.
- A frame for a book is given below.

| Slots     |    | Fillers        |  |
|-----------|----|----------------|--|
| publisher | 0  | Thomson        |  |
| title     |    | Expert Systems |  |
| author    | JC | Giarratano     |  |
| edition   | fr | Third          |  |
| year      | O  | 1998           |  |
| pages     | р  | 600            |  |
|           |    |                |  |

# Ö

## **Conceptual Dependency (CD) (Strong slot and filler structure)**

- Conceptual Dependency originally developed to represent knowledge acquired from natural language input.
- The goals of this theory are:
  - To help in the drawing of inference from sentences.
  - To be independent of the words used in the original input.
- For any 2 (or more) sentences that are identical in meaning there should be only one representation of that meaning.
- It has been used by many programs that portend to understand English.
- CD provides:

- a structure into which nodes representing information can be placed
- a specific set of primitives
- at a given level of granularity.
- Sentences are represented as a series of diagrams depicting actions using both abstract and real physical situations.
- The agent and the objects are represented.

-- Transfer of an abstract relationship. *e.g. give*.

- The actions are built up from a set of primitive acts which can be modified by tense.

#### **Examples of Primitive Acts are:**

ATRANS

**PTRANS** 

| Transfer of the physical location of an object. <i>e.g. go</i> .    |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|
| PROPEL                                                              |  |  |  |  |
| Application of a physical force to an object. <i>e.g. push</i> .    |  |  |  |  |
| MTRANS                                                              |  |  |  |  |
| Transfer of mental information. <i>e.g. tell</i> .                  |  |  |  |  |
| MBUILD                                                              |  |  |  |  |
| Construct new information from old. <i>e.g. decide</i> .            |  |  |  |  |
| SPEAK                                                               |  |  |  |  |
| Utter a sound. <i>e.g. say</i> .                                    |  |  |  |  |
| ATTEND                                                              |  |  |  |  |
| Focus a sense on a stimulus. <i>e.g. listen, watch</i> .            |  |  |  |  |
| MOVE                                                                |  |  |  |  |
| Movement of a body part by owner. <i>e.g. punch</i> , <i>kick</i> . |  |  |  |  |
| GRASP                                                               |  |  |  |  |
| Actor grasping an object. <i>e.g. clutch</i> .                      |  |  |  |  |
| INGEST                                                              |  |  |  |  |
| Actor ingesting an object. <i>e.g. eat</i> .                        |  |  |  |  |
|                                                                     |  |  |  |  |
| Actor getting rid of an object from body. <i>e.g. throw</i>         |  |  |  |  |
| Example:                                                            |  |  |  |  |
| Example.                                                            |  |  |  |  |
| John gave Mary a book.                                              |  |  |  |  |
| John $\checkmark$ ATRANS $\checkmark$ book $\checkmark$ Mary        |  |  |  |  |
| John                                                                |  |  |  |  |
| - 50iiii                                                            |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
| Mary took a book from John.                                         |  |  |  |  |
| P Mary                                                              |  |  |  |  |
| Mary $\checkmark$ ATRANS $\checkmark$ book $\checkmark$ R           |  |  |  |  |
| John                                                                |  |  |  |  |
|                                                                     |  |  |  |  |

#### SCRIPT

A script is a remembered precedent, consisting of tightly coupled, expectation-suggesting primitive-action and state change frames [Winston, 1992]

A script is a structured representation describing a stereotyped sequence of events in a particular context [Luger, Stubblefield, 1998, p.324]

That is, extend frames by explicitly representing expectations of actions and state changes.

Find primitives to describe the world like PTRANS for "transfer physical location of an object (= go)" and ATRANS for "transfer a relationship (= give)".

| A Restaurant Script          |                                 |  |
|------------------------------|---------------------------------|--|
| Script: RESTAURANT           | P                               |  |
| Track: Coffee Shop           | Entry cond.: S hungry           |  |
| Props: Tables                | S has money                     |  |
| Menu                         | Results: S has less money       |  |
| F=Food                       | O has more money                |  |
| Check                        | S is not hungry                 |  |
| Money                        | S is pleased (optional)         |  |
| Roles S=Customer             |                                 |  |
| W=Waiter                     | $\oplus$                        |  |
| C=Cook                       |                                 |  |
| M=Cashier                    |                                 |  |
| O=Owner                      |                                 |  |
| Scene 1: Entering            | Scene 2: Order                  |  |
| S PTRANS S into restaurant   | (Menu on table) (W brings menu) |  |
| S ATTEND eyes to tables      | S PTRANS menu to S              |  |
| S MBUILD where to sit        | S MTRANS food list to S         |  |
| S PTRANS S to table          | S MTRANS signal to W            |  |
| S MOVE S to sitting position | W PTRANS W to table             |  |
|                              | S MTRANS 'I want F' to W        |  |
| Scene 3: Eating              | Scene 4: Exiting                |  |
| C ATRANS F to W              | W MOVE (write check)            |  |
| W ATRANS F to S              | W PTRANS W to S                 |  |
| S INGEST F                   | W ATRANS check to S             |  |
| (Option: Return to           | S ATRANS tip to S               |  |
| Scene 2 to order more;       | S PTRANS S to M                 |  |
| otherwise, go to Scene 4)    | S ATRANS money to M             |  |

#### A Restaurant Script

S PTRANS S to out of restaurant

Downloaded from ioenotes.edu.np